These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38401492)
1. Optimizing soil tetrabromobisphenol A remediation through iron-based activation of persulfate: A comparative analysis of homogeneous and heterogeneous systems. Yuan X; Yu S; Liu Y; Zhang X; Zhang S; Xue N; Hu X J Environ Manage; 2024 Mar; 354():120302. PubMed ID: 38401492 [TBL] [Abstract][Full Text] [Related]
2. Persulfate activation with sodium alginate/sulfide coated iron nanoparticles for degradation of tetrabromobisphenol a in soil. Yuan X; Yu S; Xue N; Li T; Sun M Environ Res; 2023 Mar; 221():114820. PubMed ID: 36400226 [TBL] [Abstract][Full Text] [Related]
3. Degradation of TBBPA by nZVI activated persulfate in soil systems. Yuan X; Li T; He Y; Xue N Chemosphere; 2021 Dec; 284():131166. PubMed ID: 34175513 [TBL] [Abstract][Full Text] [Related]
4. One-Step Synthesized Iron-Carbon Core-Shell Nanoparticles to Activate Persulfate for Effective Degradation of Tetrabromobisphenol A: Performance and Activation Mechanism. Yu Y; Liu C; Yang C; Yu Y; Lu L; Ma R; Li L Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558336 [TBL] [Abstract][Full Text] [Related]
5. Alkali-thermal activated persulfate treatment of tetrabromobisphenol A in soil: Parameter optimization, mechanism, degradation pathway and toxicity evaluation. Chen Y; Shi R; Hu Y; Xu W; Zhu NM; Xie H Sci Total Environ; 2023 Dec; 903():166477. PubMed ID: 37625715 [TBL] [Abstract][Full Text] [Related]
6. Facile construction of highly reactive and stable defective iron-based metal organic frameworks for efficient degradation of Tetrabromobisphenol A via persulfate activation. Huang M; Wang Y; Wan J; Ma Y; Chi H; Xu Y; Qiu S Environ Pollut; 2020 Jan; 256():113399. PubMed ID: 31662253 [TBL] [Abstract][Full Text] [Related]
7. Efficient degradation of phenanthrene by biochar-supported nano zero-valent iron activated persulfate: performance evaluation and mechanism insights. Zhou L; Wang Y; Li D; Zhang J; Zhu X Environ Sci Pollut Res Int; 2023 Dec; 30(60):125731-125740. PubMed ID: 38001289 [TBL] [Abstract][Full Text] [Related]
8. Biomass-derived cellulose nanocrystals modified nZVI for enhanced tetrabromobisphenol A (TBBPA) removal. Li S; Hu X; Zhou J; Zheng S; Ma Q; Fu H; Zhang WX; Deng Z Int J Biol Macromol; 2024 May; 268(Pt 2):131625. PubMed ID: 38631569 [TBL] [Abstract][Full Text] [Related]
9. Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A: Implications for groundwater and soil remediation. Shen W; Xu J; Zhu L J Hazard Mater; 2021 Aug; 416():126119. PubMed ID: 34492914 [TBL] [Abstract][Full Text] [Related]
10. Revealing the fundamental role of MoO2 in promoting efficient and stable activation of persulfate by iron carbon based catalysts: Efficient Fe2+/Fe3+ cycling to generate reactive species. Liu Z; Pan S; Xu F; Wang Z; Zhao C; Xu X; Gao B; Li Q Water Res; 2022 Oct; 225():119142. PubMed ID: 36179430 [TBL] [Abstract][Full Text] [Related]
11. Efficient degradation of anthracene in soil by carbon-coated nZVI activated persulfate. Li S; Tang J; Yu C; Liu Q; Wang L J Hazard Mater; 2022 Jun; 431():128581. PubMed ID: 35247741 [TBL] [Abstract][Full Text] [Related]
12. Rapid debromination of tetrabromobisphenol A by Cu/Fe bimetallic nanoparticles in water, its mechanisms, and genotoxicity after treatments. Kuo CS; Kuo DTF; Chang A; Wang K; Chou PH; Shih YH J Hazard Mater; 2022 Jun; 432():128630. PubMed ID: 35299103 [TBL] [Abstract][Full Text] [Related]
13. Pyrite enables persulfate activation for efficient atrazine degradation. Wang X; Wang Y; Chen N; Shi Y; Zhang L Chemosphere; 2020 Apr; 244():125568. PubMed ID: 32050347 [TBL] [Abstract][Full Text] [Related]
14. Synergistic adsorption and advanced oxidation activated by persulfate for degradation of tetracycline hydrochloride using iron-modified spent bleaching earth carbon. Chen Y; Shi Y; Wan D; Zhao J; He Q; Liu Y Environ Sci Pollut Res Int; 2022 Apr; 29(17):24704-24715. PubMed ID: 34825336 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of iron-manganese bimetallic materials supported by activated carbon and application of activated persulfate in the degradation of soil contaminated by crude oil. Zheng J; Gao C; Du X; Chen H; Han R; Xie J; Zou D; Song Q; Wang Z; Li X Environ Res; 2024 Oct; 258():119455. PubMed ID: 38906449 [TBL] [Abstract][Full Text] [Related]
16. Enhanced tetrabromobisphenol A debromination by nanoscale zero valent iron particles sulfidated with S Wang H; Zhong Y; Zhu X; Li D; Deng Y; Huang W; Peng P Environ Sci Process Impacts; 2021 Feb; 23(1):86-97. PubMed ID: 33146188 [TBL] [Abstract][Full Text] [Related]
17. Degradation of rhodamine B by persulfate activated with green tea iron nanoparticles. Wang Y; Ma L; Zhang M; Li H; Han Z Environ Technol; 2023 Feb; 44(6):792-803. PubMed ID: 35108163 [TBL] [Abstract][Full Text] [Related]
18. Persulfate activation using leonardite char-supported nano zero-valent iron composites for styrene-contaminated soil and water remediation. Angkaew A; Chokejaroenrat C; Angkaew M; Satapanajaru T; Sakulthaew C Environ Res; 2024 Jan; 240(Pt 2):117486. PubMed ID: 37914017 [TBL] [Abstract][Full Text] [Related]
19. S-Fe/Co@GC reduction-oxidation sequential reaction system for the high-efficiency mineralization of tetrabromobisphenol a in water. Li C; Tan J; Wang W; Xiang M; Li H Environ Res; 2024 Dec; 263(Pt 2):120186. PubMed ID: 39427940 [TBL] [Abstract][Full Text] [Related]
20. Sulfur-containing iron carbon nanocomposites activate persulfate for combined chemical oxidation and microbial remediation of petroleum-polluted soil. Ma M; An N; Wang Y; Zhao C; Cui Z; Zhou W; Gu M; Li Q J Hazard Mater; 2024 May; 469():133889. PubMed ID: 38422735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]