These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38402030)
21. Sinter-resistant Rh nanoparticles supported on γ-Al Chu S; Cai Z; Wang M; Zheng Y; Wang Y; Zhou Z; Weng W Nanoscale; 2020 Oct; 12(40):20922-20932. PubMed ID: 33090164 [TBL] [Abstract][Full Text] [Related]
22. Mechanistic study of partial oxidation of methane to syngas using in situ time-resolved FTIR and microprobe Raman spectroscopies. Weng WZ; Chen MS; Wan HL Chem Rec; 2002; 2(2):102-12. PubMed ID: 12001209 [TBL] [Abstract][Full Text] [Related]
23. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
24. Air-Promoted Light-Driven Hydrogen Production from Bioethanol over Core/Shell Cr Wang Z; Chen Y; Sheng B; Li J; Yao L; Yu Y; Song J; Yu T; Li Y; Pan H; Wang P; Wang X; Zhu L; Zhou B Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400011. PubMed ID: 38409577 [TBL] [Abstract][Full Text] [Related]
25. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
26. CO Afandi NS; Mohammadi M; Ichikawa S; Mohamed AR Environ Sci Pollut Res Int; 2020 Dec; 27(34):43011-43027. PubMed ID: 32725565 [TBL] [Abstract][Full Text] [Related]
27. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO Rameshan C; Li H; Anic K; Roiaz M; Pramhaas V; Rameshan R; Blume R; Hävecker M; Knudsen J; Knop-Gericke A; Rupprechter G J Phys Condens Matter; 2018 Jul; 30(26):264007. PubMed ID: 29786619 [TBL] [Abstract][Full Text] [Related]
28. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO Wang H; Cui G; Lu H; Li Z; Wang L; Meng H; Li J; Yan H; Yang Y; Wei M Nat Commun; 2024 May; 15(1):3765. PubMed ID: 38704402 [TBL] [Abstract][Full Text] [Related]
29. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor. Michalsky R; Neuhaus D; Steinfeld A Energy Technol (Weinh); 2015 Jul; 3(7):784-789. PubMed ID: 31218206 [TBL] [Abstract][Full Text] [Related]
30. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834 [TBL] [Abstract][Full Text] [Related]
31. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177 [TBL] [Abstract][Full Text] [Related]
32. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide. Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902 [TBL] [Abstract][Full Text] [Related]
33. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Lavoie JM Front Chem; 2014; 2():81. PubMed ID: 25426488 [TBL] [Abstract][Full Text] [Related]
34. Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO Nikolaraki E; Goula G; Panagiotopoulou P; Taylor MJ; Kousi K; Kyriakou G; Kondarides DI; Lambert RM; Yentekakis IV Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835645 [TBL] [Abstract][Full Text] [Related]
35. Water-promoted selective photocatalytic methane oxidation for methanol production. Zhou P; Tang S; Ye Z; Navid IA; Xiao Y; Sun K; Mi Z Chem Sci; 2024 Jan; 15(4):1505-1510. PubMed ID: 38274076 [TBL] [Abstract][Full Text] [Related]
36. Oxidative CO2 reforming of methane in La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) hollow fiber membrane reactor. Kathiraser Y; Wang Z; Kawi S Environ Sci Technol; 2013 Dec; 47(24):14510-7. PubMed ID: 24274713 [TBL] [Abstract][Full Text] [Related]
37. Methane Activation by Gas Phase Atomic Clusters. Zhao YX; Li ZY; Yang Y; He SG Acc Chem Res; 2018 Nov; 51(11):2603-2610. PubMed ID: 30289247 [TBL] [Abstract][Full Text] [Related]
38. Light-Induced Redox Looping of a Rhodium/Ce Yang Y; Chai Z; Qin X; Zhang Z; Muhetaer A; Wang C; Huang H; Yang C; Ma D; Li Q; Xu D Angew Chem Int Ed Engl; 2022 May; 61(21):e202200567. PubMed ID: 35277912 [TBL] [Abstract][Full Text] [Related]
39. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane. Al-Doghachi FA; Islam A; Zainal Z; Saiman MI; Embong Z; Taufiq-Yap YH PLoS One; 2016; 11(1):e0145862. PubMed ID: 26745623 [TBL] [Abstract][Full Text] [Related]
40. Sustaining syngas production at a near-unity H Kaneko H; Cho Y; Sugimura T; Hashimoto A; Yamaguchi A; Miyauchi M Chem Commun (Camb); 2024 Sep; 60(75):10406-10409. PubMed ID: 39224944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]