These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38402147)

  • 1. A genome-reduced Corynebacterium glutamicum derivative discloses a hidden pathway relevant for 1,2-propanediol production.
    Siebert D; Glawischnig E; Wirth MT; Vannahme M; Salazar-Quirós Á; Weiske A; Saydam E; Möggenried D; Wendisch VF; Blombach B
    Microb Cell Fact; 2024 Feb; 23(1):62. PubMed ID: 38402147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose.
    Li Z; Dong Y; Liu Y; Cen X; Liu D; Chen Z
    Metab Eng; 2022 Mar; 70():79-88. PubMed ID: 35038553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum.
    Siebert D; Wendisch VF
    Biotechnol Biofuels; 2015; 8():91. PubMed ID: 26110019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum.
    Niimi S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1721-9. PubMed ID: 21424269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cofactor recycling for co-production of 1,3-propanediol and glutamate by metabolically engineered Corynebacterium glutamicum.
    Huang J; Wu Y; Wu W; Zhang Y; Liu D; Chen Z
    Sci Rep; 2017 Feb; 7():42246. PubMed ID: 28176878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol.
    Li H; Liao JC
    Microb Cell Fact; 2013 Jan; 12():4. PubMed ID: 23339487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum.
    Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
    Pérez-García F; Peters-Wendisch P; Wendisch VF
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8075-90. PubMed ID: 27345060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentative production of enantiomerically pure S-1,2-propanediol from glucose by engineered E. coli strain.
    Zhu L; Guan X; Xie N; Wang L; Yu B; Ma Y
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1241-1251. PubMed ID: 26454866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered
    Lange J; Müller F; Bernecker K; Dahmen N; Takors R; Blombach B
    Biotechnol Biofuels; 2017; 10():277. PubMed ID: 29201141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
    Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2011 Apr; 108(4):867-79. PubMed ID: 21404260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Corynebacterium glutamicum for the production of pyruvate.
    Wieschalka S; Blombach B; Eikmanns BJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.
    Buchholz J; Schwentner A; Brunnenkan B; Gabris C; Grimm S; Gerstmeir R; Takors R; Eikmanns BJ; Blombach B
    Appl Environ Microbiol; 2013 Sep; 79(18):5566-75. PubMed ID: 23835179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors.
    Shen J; Chen J; Solem C; Jensen PR; Liu JM
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer's disease.
    Ramp P; Lehnert A; Matamouros S; Wirtz A; Baumgart M; Bott M
    Metab Eng; 2021 Sep; 67():173-185. PubMed ID: 34224896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.
    Tsuge Y; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):375-89. PubMed ID: 25424693
    [TBL] [Abstract]