These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38402620)

  • 1. Mitochondrial DNA integrity and metabolome profile are preserved in the human induced pluripotent stem cell reference line KOLF2.1J.
    Dobner J; Nguyen T; Dunkel A; Prigione A; Krutmann J; Rossi A
    Stem Cell Reports; 2024 Mar; 19(3):343-350. PubMed ID: 38402620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High density SNP array and reanalysis of genome sequencing uncovers CNVs associated with neurodevelopmental disorders in KOLF2.1J iPSCs.
    Gracia-Diaz C; Perdomo JE; Khan ME; Disanza B; Cajka GG; Lei S; Gagne A; Maguire JA; Roule T; Shalem O; Bhoj EJ; Ahrens-Nicklas RC; French D; Goldberg EM; Wang K; Glessner J; Akizu N
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteome remodeling characterization of two human reference pluripotent stem cell lines during neurogenesis and cardiomyogenesis.
    Nam KH; Ordureau A
    Proteomics; 2022 Oct; 22(19-20):e2100246. PubMed ID: 35871287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large structural variants in KOLF2.1J are unlikely to compromise neurological disease modelling.
    Ryan M; McDonough JA; Ward ME; Cookson MR; Skarnes WC; Merkle FT
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reference human induced pluripotent stem cell line for large-scale collaborative studies.
    Pantazis CB; Yang A; Lara E; McDonough JA; Blauwendraat C; Peng L; Oguro H; Kanaujiya J; Zou J; Sebesta D; Pratt G; Cross E; Blockwick J; Buxton P; Kinner-Bibeau L; Medura C; Tompkins C; Hughes S; Santiana M; Faghri F; Nalls MA; Vitale D; Ballard S; Qi YA; Ramos DM; Anderson KM; Stadler J; Narayan P; Papademetriou J; Reilly L; Nelson MP; Aggarwal S; Rosen LU; Kirwan P; Pisupati V; Coon SL; Scholz SW; Priebe T; Öttl M; Dong J; Meijer M; Janssen LJM; Lourenco VS; van der Kant R; Crusius D; Paquet D; Raulin AC; Bu G; Held A; Wainger BJ; Gabriele RMC; Casey JM; Wray S; Abu-Bonsrah D; Parish CL; Beccari MS; Cleveland DW; Li E; Rose IVL; Kampmann M; Calatayud Aristoy C; Verstreken P; Heinrich L; Chen MY; Schüle B; Dou D; Holzbaur ELF; Zanellati MC; Basundra R; Deshmukh M; Cohen S; Khanna R; Raman M; Nevin ZS; Matia M; Van Lent J; Timmerman V; Conklin BR; Johnson Chase K; Zhang K; Funes S; Bosco DA; Erlebach L; Welzer M; Kronenberg-Versteeg D; Lyu G; Arenas E; Coccia E; Sarrafha L; Ahfeldt T; Marioni JC; Skarnes WC; Cookson MR; Ward ME; Merkle FT
    Cell Stem Cell; 2022 Dec; 29(12):1685-1702.e22. PubMed ID: 36459969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming.
    Prigione A; Lichtner B; Kuhl H; Struys EA; Wamelink M; Lehrach H; Ralser M; Timmermann B; Adjaye J
    Stem Cells; 2011 Sep; 29(9):1338-48. PubMed ID: 21732474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relevance of mitochondrial DNA variants fluctuation during reprogramming and neuronal differentiation of human iPSCs.
    Palombo F; Peron C; Caporali L; Iannielli A; Maresca A; Di Meo I; Fiorini C; Segnali A; Sciacca FL; Rizzo A; Levi S; Suomalainen A; Prigione A; Broccoli V; Carelli V; Tiranti V
    Stem Cell Reports; 2021 Aug; 16(8):1953-1967. PubMed ID: 34329598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs.
    Yang Y; Wu H; Kang X; Liang Y; Lan T; Li T; Tan T; Peng J; Zhang Q; An G; Liu Y; Yu Q; Ma Z; Lian Y; Soh BS; Chen Q; Liu P; Chen Y; Sun X; Li R; Zhen X; Liu P; Yu Y; Li X; Fan Y
    Protein Cell; 2018 Mar; 9(3):283-297. PubMed ID: 29318513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the mitochondrial signatures in ESCs and iPSCs and their neural derivations.
    Kristiansen CK; Chen A; Høyland LE; Ziegler M; Sullivan GJ; Bindoff LA; Liang KX
    Cell Cycle; 2022 Oct; 21(20):2206-2221. PubMed ID: 35815665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.
    Lorenz C; Lesimple P; Bukowiecki R; Zink A; Inak G; Mlody B; Singh M; Semtner M; Mah N; Auré K; Leong M; Zabiegalov O; Lyras EM; Pfiffer V; Fauler B; Eichhorst J; Wiesner B; Huebner N; Priller J; Mielke T; Meierhofer D; Izsvák Z; Meier JC; Bouillaud F; Adjaye J; Schuelke M; Wanker EE; Lombès A; Prigione A
    Cell Stem Cell; 2017 May; 20(5):659-674.e9. PubMed ID: 28132834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Signature of MELAS/Leigh Overlap Syndrome in Patient-specific Induced Pluripotent Stem Cells Model.
    Hattori T; Hamazaki T; Kudo S; Shintaku H
    Osaka City Med J; 2016 Dec; 62(2):69-76. PubMed ID: 30721581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.
    Folmes CD; Martinez-Fernandez A; Perales-Clemente E; Li X; McDonald A; Oglesbee D; Hrstka SC; Perez-Terzic C; Terzic A; Nelson TJ
    Stem Cells; 2013 Jul; 31(7):1298-308. PubMed ID: 23553816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced pluripotent stem cells (iPSCs) for modeling mitochondrial DNA disorders.
    Prigione A
    Methods Mol Biol; 2015; 1265():349-56. PubMed ID: 25634286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial genome mutations in mesenchymal stem cells derived from human dental induced pluripotent stem cells.
    Park J; Lee Y; Shin J; Lee HJ; Son YB; Park BW; Kim D; Rho GJ; Kang E
    BMB Rep; 2019 Dec; 52(12):689-694. PubMed ID: 31234953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial genome mutations and neuronal dysfunction of induced pluripotent stem cells derived from patients with Alzheimer's disease.
    Lee Y; Kim M; Lee M; So S; Kang SS; Choi J; Kim D; Heo H; Lee SS; Park HR; Ko JJ; Song J; Kang E
    Cell Prolif; 2022 Jul; 55(7):e13274. PubMed ID: 35698260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and Characterization of Induced Pluripotent Stem Cells from Patients with mtDNA Mutations.
    Hämäläinen RH; Suomalainen A
    Methods Mol Biol; 2016; 1353():65-75. PubMed ID: 26187202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KOLF2.1J iPSCs carry CNVs associated with neurodevelopmental disorders.
    Gracia-Diaz C; Perdomo JE; Khan ME; Roule T; Disanza BL; Cajka GG; Lei S; Gagne AL; Maguire JA; Shalem O; Bhoj EJ; Ahrens-Nicklas RC; French DL; Goldberg EM; Wang K; Glessner JT; Akizu N
    Cell Stem Cell; 2024 Mar; 31(3):288-289. PubMed ID: 38458176
    [No Abstract]   [Full Text] [Related]  

  • 18. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids.
    Tolle I; Tiranti V; Prigione A
    EMBO Rep; 2023 Apr; 24(4):e55678. PubMed ID: 36876467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible mitochondrial DNA accumulation in nuclei of pluripotent stem cells.
    Schneider JS; Cheng X; Zhao Q; Underbayev C; Gonzalez JP; Raveche ES; Fraidenraich D; Ivessa AS
    Stem Cells Dev; 2014 Nov; 23(22):2712-9. PubMed ID: 24964274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation.
    Yahata N; Matsumoto Y; Omi M; Yamamoto N; Hata R
    Sci Rep; 2017 Nov; 7(1):15557. PubMed ID: 29138463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.