These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38402769)
1. Effect of a collagen peptide-fish oil high internal phase emulsion on the printability and gelation of 3D-printed surimi gel inks. Lu S; Pei Z; Lu Q; Li Q; He Y; Feng A; Liu Z; Xue C; Liu J; Lin X; Li Y; Li C Food Chem; 2024 Jul; 446():138810. PubMed ID: 38402769 [TBL] [Abstract][Full Text] [Related]
2. Depletion Flocculation of High Internal Phase Pickering Emulsion Inks: A Colloidal Engineering Approach to Develop 3D Printed Porous Scaffolds with Tunable Bioactive Delivery. Shahbazi M; Jäger H; Huc-Mathis D; Asghartabar Kashi P; Ettelaie R; Sarkar A; Chen J ACS Appl Mater Interfaces; 2024 Aug; 16(33):43430-43450. PubMed ID: 39110913 [TBL] [Abstract][Full Text] [Related]
3. Regulatory mechanisms governing collagen peptides and their 3D printing application for frozen surimi. Shi Y; Tu L; Yuan C; Wu J; Li X; Wang S; Chen H; Chen X J Food Sci; 2022 Jun; 87(6):2692-2706. PubMed ID: 35590483 [TBL] [Abstract][Full Text] [Related]
4. Emulsion Inks for 3D Printing of High Porosity Materials. Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061 [TBL] [Abstract][Full Text] [Related]
5. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus). Liu Y; Sun Q; Wei S; Xia Q; Pan Y; Ji H; Deng C; Hao J; Liu S Food Chem; 2022 Mar; 371():131046. PubMed ID: 34537614 [TBL] [Abstract][Full Text] [Related]
6. Investigation on 3D Printing of Shrimp Surimi Adding Three Edible Oils. Pan Y; Sun Q; Liu Y; Wei S; Han Z; Zheng O; Ji H; Zhang B; Liu S Foods; 2024 Jan; 13(3):. PubMed ID: 38338564 [TBL] [Abstract][Full Text] [Related]
7. Stability and 3D-printing performance of high-internal-phase emulsions based on ultrafine soybean meal particles. Liao H; Jiang T; Chen L; Wang G; Shen Q; Liu X; Ding W; Zhu L Food Chem; 2024 Aug; 449():139172. PubMed ID: 38574522 [TBL] [Abstract][Full Text] [Related]
8. High Internal Phase Emulsion Gels Stabilized by Natural Casein peptides. Wakita K; Imura T J Oleo Sci; 2018 Dec; 67(12):1579-1584. PubMed ID: 30429446 [TBL] [Abstract][Full Text] [Related]
9. Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Pei Z; Wang H; Xia G; Hu Y; Xue C; Lu S; Li C; Shen X Food Chem; 2023 Mar; 403():134424. PubMed ID: 36358074 [TBL] [Abstract][Full Text] [Related]
10. Effect of pH and heating conditions on the properties of Alaska pollock (Theragra chalcogramma) surimi gel fortified with fish oil. Gao Y; Fukushima H; Deng S; Jia R; Osako K; Okazaki E J Texture Stud; 2018 Dec; 49(6):595-603. PubMed ID: 30238581 [TBL] [Abstract][Full Text] [Related]
11. Ovalbumin/sodium alginate Pickering emulsion: Structural characteristics and its contribution to enhancing the gel properties of Hairtail (Trichiurus haumela) surimi. Wang Z; Liu S; Yang W; Geng JT; Huang T; Wei H; Qiao Z; Jia R Food Chem; 2024 Dec; 461():140893. PubMed ID: 39178539 [TBL] [Abstract][Full Text] [Related]
12. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225 [TBL] [Abstract][Full Text] [Related]
13. Freeze-thaw stability of high-internal-phase emulsion stabilized by chickpea protein microgel particles and its application in surimi. Xu X; Fan L; Li J J Sci Food Agric; 2024 Nov; 104(14):8621-8633. PubMed ID: 39011982 [TBL] [Abstract][Full Text] [Related]
14. Emulsion Surimi Gel with Tunable Gel Properties and Improved Thermal Stability by Modulating Oil Types and Emulsification Degree. Zhu S; Chen X; Zheng J; Fan W; Ding Y; Zhou X Foods; 2022 Jan; 11(2):. PubMed ID: 35053911 [TBL] [Abstract][Full Text] [Related]
15. Comparative effects of W/O and O/W emulsions on the physicochemical properties of silver carp surimi gels. Zhang E; Zhao Y; Ren Z; Shi L; Weng W Food Chem X; 2023 Dec; 20():100988. PubMed ID: 38144838 [TBL] [Abstract][Full Text] [Related]
16. Investigation of sweet potato starch as a structural enhancer for three-dimensional printing of Scomberomorus niphonius surimi. Dong X; Huang Y; Pan Y; Wang K; Prakash S; Zhu B J Texture Stud; 2019 Aug; 50(4):316-324. PubMed ID: 30847926 [TBL] [Abstract][Full Text] [Related]
17. High Internal Phase Emulsion for Food-Grade 3D Printing Materials. Li X; Xu X; Song L; Bi A; Wu C; Ma Y; Du M; Zhu B ACS Appl Mater Interfaces; 2020 Oct; 12(40):45493-45503. PubMed ID: 32871079 [TBL] [Abstract][Full Text] [Related]
18. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers. Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590 [TBL] [Abstract][Full Text] [Related]
19. Effect of modified cellulose-based emulsion on gel properties and protein conformation of Nemipterus virgatus surimi. Mi H; Yu W; Li Y; Li J; Chen J; Li X Food Chem; 2024 Oct; 455():139841. PubMed ID: 38824724 [TBL] [Abstract][Full Text] [Related]
20. Development and characterization of emulsion gels prepared via gliadin-based colloidal particles and gellan gum with tunable rheological properties for 3D printed dysphagia diet. Hou Y; Sun Y; Zhang P; Wang H; Tan M Int J Biol Macromol; 2023 Dec; 253(Pt 3):126839. PubMed ID: 37696376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]