These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 38402808)

  • 1. Efficient spiking neural network design via neural architecture search.
    Yan J; Liu Q; Zhang M; Feng L; Ma D; Li H; Pan G
    Neural Netw; 2024 May; 173():106172. PubMed ID: 38402808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks.
    Shen J; Zhao Y; Liu JK; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5841-5855. PubMed ID: 34890341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sampling complex topology structures for spiking neural networks.
    Yan S; Meng Q; Xiao M; Wang Y; Lin Z
    Neural Netw; 2024 Apr; 172():106121. PubMed ID: 38244355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpQuant-SNN: ultra-low precision membrane potential with sparse activations unlock the potential of on-device spiking neural networks applications.
    Hasssan A; Meng J; Anupreetham A; Seo JS
    Front Neurosci; 2024; 18():1440000. PubMed ID: 39296710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Shot Neural Architecture Search by Dynamically Pruning Supernet in Hierarchical Order.
    Zhang J; Li D; Wang L; Zhang L
    Int J Neural Syst; 2021 Jul; 31(7):2150029. PubMed ID: 34128778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auto-Spikformer: Spikformer architecture search.
    Che K; Zhou Z; Niu J; Ma Z; Fang W; Chen Y; Shen S; Yuan L; Tian Y
    Front Neurosci; 2024; 18():1372257. PubMed ID: 39108310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised Learning in Multilayer Spiking Neural Networks With Spike Temporal Error Backpropagation.
    Luo X; Qu H; Wang Y; Yi Z; Zhang J; Zhang M
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10141-10153. PubMed ID: 35436200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning in spiking neural networks.
    Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A
    Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification.
    Vanarse A; Espinosa-Ramos JI; Osseiran A; Rassau A; Kasabov N
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-architectural knowledge distillation for spiking neural networks.
    Qiu H; Ning M; Song Z; Fang W; Chen Y; Sun T; Ma Z; Yuan L; Tian Y
    Neural Netw; 2024 Oct; 178():106475. PubMed ID: 38941738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
    Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.