BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38402991)

  • 1. Employing hybrid deep learning for near-real-time forecasts of sensor-based algal parameters in a Microcystis bloom-dominated lake.
    Wang L; Shan K; Yi Y; Yang H; Zhang Y; Xie M; Zhou Q; Shang M
    Sci Total Environ; 2024 Apr; 922():171009. PubMed ID: 38402991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning method for cyanobacterial harmful algae blooms prediction in Taihu Lake, China.
    Cao H; Han L; Li L
    Harmful Algae; 2022 Mar; 113():102189. PubMed ID: 35287935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of Influencing Factors of Chlorophyll-a in Lake Taihu Based on Bayesian Network].
    Liu J; He YC; Deng JM; Tang XM
    Huan Jing Ke Xue; 2023 May; 44(5):2592-2600. PubMed ID: 37177933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs.
    Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M
    J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bloom-forming toxic cyanobacterium Microcystis: Quantification and monitoring with a high-frequency echosounder.
    Ostrovsky I; Wu S; Li L; Song L
    Water Res; 2020 Sep; 183():116091. PubMed ID: 32623244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CyanoTRACKER: A cloud-based integrated multi-platform architecture for global observation of cyanobacterial harmful algal blooms.
    Mishra DR; Kumar A; Ramaswamy L; Boddula VK; Das MC; Page BP; Weber SJ
    Harmful Algae; 2020 Jun; 96():101828. PubMed ID: 32560841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of in-situ monitoring and tracking the vertical migration of cyanobacterial blooms using LISST-HAB.
    Zhang Y; Yang T; Zhang Y; Xu G; Lorke A; Pan M; He F; Li Q; Xiao B; Wu X
    Water Res; 2024 Jun; 257():121693. PubMed ID: 38728785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel and Convenient Method for Early Warning of Algal Cell Density by Chlorophyll Fluorescence Parameters and Its Application in a Highland Lake.
    Wang H; Zhu R; Zhang J; Ni L; Shen H; Xie P
    Front Plant Sci; 2018; 9():869. PubMed ID: 30002664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms.
    Wang K; Mou X; Cao H; Struewing I; Allen J; Lu J
    Environ Pollut; 2021 Nov; 288():117682. PubMed ID: 34271516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous and Synoptic Assessment of Indian Inland Waters for Harmful Algae Blooms.
    Maniyar CB; Kumar A; Mishra DR
    Harmful Algae; 2022 Jan; 111():102160. PubMed ID: 35016766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiotic pollution promotes dominance by harmful cyanobacteria: A case study examining norfloxacin exposure in competition experiments.
    Li JJ; Chao JJ; McKay RML; Xu RB; Wang T; Xu J; Zhang JL; Chang XX
    J Phycol; 2021 Apr; 57(2):677-688. PubMed ID: 33483964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes.
    Cook KV; Beyer JE; Xiao X; Hambright KD
    Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous feature engineering and interpretation: Forecasting harmful algal blooms using a deep learning approach.
    Kim T; Shin J; Lee D; Kim Y; Na E; Park JH; Lim C; Cha Y
    Water Res; 2022 May; 215():118289. PubMed ID: 35303563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of
    Yancey CE; Yu F; Tripathi A; Sherman DH; Dick GJ
    Appl Environ Microbiol; 2023 May; 89(5):e0209222. PubMed ID: 37070981
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel single-parameter approach for forecasting algal blooms.
    Xiao X; He J; Huang H; Miller TR; Christakos G; Reichwaldt ES; Ghadouani A; Lin S; Xu X; Shi J
    Water Res; 2017 Jan; 108():222-231. PubMed ID: 27847147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Community Response to Granular Peroxide-Based Algaecide Treatment of a Cyanobacterial Harmful Algal Bloom in Lake Okeechobee, Florida (USA).
    Lefler FW; Barbosa M; Berthold DE; Roten R; Bishop WM; Laughinghouse HD
    Toxins (Basel); 2024 Apr; 16(5):. PubMed ID: 38787058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic and Metatranscriptomic Insights into Population Diversity of
    Yancey CE; Smith DJ; Den Uyl PA; Mohamed OG; Yu F; Ruberg SA; Chaffin JD; Goodwin KD; Tripathi A; Sherman DH; Dick GJ
    Appl Environ Microbiol; 2022 May; 88(9):e0246421. PubMed ID: 35438519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake.
    Li H; Alsanea A; Barber M; Goel R
    Sci Total Environ; 2019 Apr; 661():465-480. PubMed ID: 30677691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanopeptides restriction and degradation co-mediate microbiota assembly during a freshwater cyanobacterial harmful algal bloom (CyanoHAB).
    Gao H; Zhao Z; Zhang L; Ju F
    Water Res; 2022 Jul; 220():118674. PubMed ID: 35661508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.