These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38403094)

  • 1. Mitochondrial stress in the spaceflight environment.
    Rudolf AM; Hood WR
    Mitochondrion; 2024 May; 76():101855. PubMed ID: 38403094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuro-consequences of the spaceflight environment.
    Mhatre SD; Iyer J; Puukila S; Paul AM; Tahimic CGT; Rubinstein L; Lowe M; Alwood JS; Sowa MB; Bhattacharya S; Globus RK; Ronca AE
    Neurosci Biobehav Rev; 2022 Jan; 132():908-935. PubMed ID: 34767877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes.
    Willey JS; Britten RA; Blaber E; Tahimic CGT; Chancellor J; Mortreux M; Sanford LD; Kubik AJ; Delp MD; Mao XW
    J Environ Sci Health C Toxicol Carcinog; 2021; 39(2):129-179. PubMed ID: 33902391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors mediating spaceflight-induced skeletal muscle atrophy.
    Lee PHU; Chung M; Ren Z; Mair DB; Kim DH
    Am J Physiol Cell Physiol; 2022 Mar; 322(3):C567-C580. PubMed ID: 35171699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurology of space flight; How does space flight effect the human nervous system?
    Gupta U; Baig S; Majid A; Bell SM
    Life Sci Space Res (Amst); 2023 Feb; 36():105-115. PubMed ID: 36682819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration.
    Afshinnekoo E; Scott RT; MacKay MJ; Pariset E; Cekanaviciute E; Barker R; Gilroy S; Hassane D; Smith SM; Zwart SR; Nelman-Gonzalez M; Crucian BE; Ponomarev SA; Orlov OI; Shiba D; Muratani M; Yamamoto M; Richards SE; Vaishampayan PA; Meydan C; Foox J; Myrrhe J; Istasse E; Singh N; Venkateswaran K; Keune JA; Ray HE; Basner M; Miller J; Vitaterna MH; Taylor DM; Wallace D; Rubins K; Bailey SM; Grabham P; Costes SV; Mason CE; Beheshti A
    Cell; 2020 Nov; 183(5):1162-1184. PubMed ID: 33242416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences.
    Zhang Y; Moreno-Villanueva M; Krieger S; Ramesh GT; Neelam S; Wu H
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28561779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spaceflight induced changes in the human proteome.
    Kononikhin AS; Starodubtseva NL; Pastushkova LK; Kashirina DN; Fedorchenko KY; Brhozovsky AG; Popov IA; Larina IM; Nikolaev EN
    Expert Rev Proteomics; 2017 Jan; 14(1):15-29. PubMed ID: 27817217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatology in space: Effects of spaceflight and simulated microgravity on the liver.
    Vinken M
    Liver Int; 2022 Dec; 42(12):2599-2606. PubMed ID: 36183343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging Spaceflight to Advance Cardiovascular Research on Earth.
    Scott JM; Stoudemire J; Dolan L; Downs M
    Circ Res; 2022 Mar; 130(6):942-957. PubMed ID: 35298305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study.
    Beheshti A; Cekanaviciute E; Smith DJ; Costes SV
    Sci Rep; 2018 Mar; 8(1):4191. PubMed ID: 29520055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity.
    Hupfeld KE; McGregor HR; Reuter-Lorenz PA; Seidler RD
    Neurosci Biobehav Rev; 2021 Mar; 122():176-189. PubMed ID: 33454290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spaceflight Environment.
    King SA; Kutz CJ; Chough NG
    Emerg Med Clin North Am; 2024 Aug; 42(3):695-709. PubMed ID: 38925783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How spaceflight challenges human cardiovascular health.
    Jirak P; Mirna M; Rezar R; Motloch LJ; Lichtenauer M; Jordan J; Binneboessel S; Tank J; Limper U; Jung C
    Eur J Prev Cardiol; 2022 Aug; 29(10):1399-1411. PubMed ID: 35148376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Lungs in Space: A Review of Current Knowledge and Methodologies.
    Smith MB; Chen H; Oliver BGG
    Cells; 2024 Jul; 13(13):. PubMed ID: 38995005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and health implications of civilian spaceflight.
    Wichman HA
    Aviat Space Environ Med; 2005 Jun; 76(6 Suppl):B164-71. PubMed ID: 15943209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity alters the expressions of DNA repair genes and their regulatory miRNAs in space-flown Caenorhabditis elegans.
    Zhao L; Zhang G; Tang A; Huang B; Mi D
    Life Sci Space Res (Amst); 2023 May; 37():25-38. PubMed ID: 37087176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model.
    Mao XW; Nishiyama NC; Byrum SD; Stanbouly S; Jones T; Holley J; Sridharan V; Boerma M; Tackett AJ; Willey JS; Pecaut MJ; Delp MD
    FASEB J; 2020 Nov; 34(11):15516-15530. PubMed ID: 32981077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spaceflight bioreactor studies of cells and tissues.
    Freed LE; Vunjak-Novakovic G
    Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.