BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3840344)

  • 1. Reactions of lipoamide dehydrogenase and glutathione reductase with arsonic acids and arsonous acids.
    Knowles FC
    Arch Biochem Biophys; 1985 Oct; 242(1):1-10. PubMed ID: 3840344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of lipoamide dehydrogenase altered by site-directed mutagenesis at a key residue (I184Y) in the pyridine nucleotide binding domain.
    Maeda-Yorita K; Russell GC; Guest JR; Massey V; Williams CH
    Biochemistry; 1991 Dec; 30(51):11788-95. PubMed ID: 1751496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Diaphorase reactions of lipoamide dehydrogenases from the adrenal ketoglutarate dehydrogenase complex].
    Chenas NK; Butkus AA; Kulis IuIu
    Biokhimiia; 1985 Jun; 50(6):1018-23. PubMed ID: 3839697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase.
    Pinto MC; Mata AM; López-Barea J
    Eur J Biochem; 1985 Sep; 151(2):275-81. PubMed ID: 3896786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic properties of lipoamide dehydrogenase from Mycobacterium smegmatis.
    Marcinkeviciene J; Blanchard JS
    Arch Biochem Biophys; 1997 Apr; 340(2):168-76. PubMed ID: 9143318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the oxidation-reduction potential of the flavin in lipoamide dehydrogenase from Escherichia coli by alteration of a nearby charged residue, K53R.
    Maeda-Yorita K; Russell GC; Guest JR; Massey V; Williams CH
    Biochemistry; 1994 May; 33(20):6213-20. PubMed ID: 8193135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli.
    Arscott LD; Gromer S; Schirmer RH; Becker K; Williams CH
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3621-6. PubMed ID: 9108027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified determination of lipoyl groups by lipoamide dehydrogenase in the presence of oxidized glutathione.
    Konishi T; Handelman G; Matsugo S; Mathur VV; Tritschler HJ; Packer L
    Biochem Mol Biol Int; 1996 May; 38(6):1155-61. PubMed ID: 8739037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide anion production by lipoamide dehydrogenase redox-cycling: effect of enzyme modifiers.
    Grinblat L; Sreider CM; Stoppani AO
    Biochem Int; 1991 Jan; 23(1):83-92. PubMed ID: 1650556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.
    Vienozinskis J; Butkus A; Cenas N; Kulys J
    Biochem J; 1990 Jul; 269(1):101-5. PubMed ID: 2375745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin binding site differences between lipoamide dehydrogenase and glutathione reductase as revealed by static and time-resolved flavin fluorescence.
    de Kok A; Visser AJ
    FEBS Lett; 1987 Jun; 218(1):135-8. PubMed ID: 3595857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase.
    Carlberg I; Sahlman L; Mannervik B
    FEBS Lett; 1985 Jan; 180(1):102-6. PubMed ID: 3917936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction.
    Wilkinson KD; Williams CH
    J Biol Chem; 1981 Mar; 256(5):2307-14. PubMed ID: 7007381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipoamide dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Kinetics of wild-type and mutated enzymes.
    Benen J; van Berkel W; Dieteren N; Arscott D; Williams C; Veeger C; de Kok A
    Eur J Biochem; 1992 Jul; 207(2):487-97. PubMed ID: 1633804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J; Lee CY
    Eur J Biochem; 1979 Aug; 98(2):487-99. PubMed ID: 39757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipoamide dehydrogenase from Trypanosoma cruzi: some properties and cellular localization.
    Portela MP; Stopopani AO
    Biochem Int; 1991 May; 24(1):147-55. PubMed ID: 1768255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the oxidation-reduction potentials for two-electron and four-electron reduction of lipoamide dehydrogenase from pig heart.
    Matthews RG; Williams CH
    J Biol Chem; 1976 Jul; 251(13):3956-64. PubMed ID: 6467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative studies of glutathione reductase and lipoamide dehydrogenase.
    Tsai CS; Templeton DM; Godin JR; Farrell KP; Wand AJ
    Comp Biochem Physiol B; 1988; 90(2):335-9. PubMed ID: 3044690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Redox properties of the FAD and interactions with pyridine nucleotides.
    Hopkins N; Williams CH
    Biochemistry; 1995 Sep; 34(37):11766-76. PubMed ID: 7547909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.