BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 3840387)

  • 1. Effects of hydrostatic pressure on the molecular structure and endothermic phase transitions of phosphatidylcholine bilayers: a Raman scattering study.
    Wong PT; Mantsch HH
    Biochemistry; 1985 Jul; 24(15):4091-6. PubMed ID: 3840387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers.
    Braganza LF; Worcester DL
    Biochemistry; 1986 May; 25(9):2591-6. PubMed ID: 3718966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-temperature structural phase transition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers in the gel phase.
    Wong PT; Mantsch HH
    Biochim Biophys Acta; 1983 Jul; 732(1):92-8. PubMed ID: 6688187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure studies on two hydrated phospholipids--1,2-dimyristoyl-phosphatidylcholine and 1,2-dipalmitoyl-phosphatidylcholine.
    Prasad SK; Shashidhar R; Gaber BP; Chandrasekhar SC
    Chem Phys Lipids; 1987 Apr; 43(3):227-35. PubMed ID: 3621385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure effects on the physical properties of lipid bilayers detected by trans-parinaric acid fluorescence decay.
    Reyes Mateo C; Tauc P; Brochon JC
    Biophys J; 1993 Nov; 65(5):2248-60. PubMed ID: 8298048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical mechanical analysis of Raman spectroscopic order parameter changes in pressure-induced lipid bilayer phase transitions.
    Yager P; Peticolas WL
    Biophys J; 1980 Sep; 31(3):359-70. PubMed ID: 6894876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure 31P NMR study of dipalmitoylphosphatidylcholine bilayers.
    Peng X; Jonas J
    Biochemistry; 1992 Jul; 31(28):6383-90. PubMed ID: 1633150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes in lipid bilayers and biological membranes caused hydrostatic pressure.
    Braganza LF; Worcester DL
    Biochemistry; 1986 Nov; 25(23):7484-8. PubMed ID: 3801427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dye permeability at phase transitions in single and binary component phospholipid bilayers.
    Braganza LF; Blott BH; Coe TJ; Melville D
    Biochim Biophys Acta; 1983 Jun; 731(2):137-44. PubMed ID: 6687808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High hydrostatic pressure effects investigated by neutron scattering on lipid multilamellar vesicles.
    Trapp M; Marion J; Tehei M; Demé B; Gutberlet T; Peters J
    Phys Chem Chem Phys; 2013 Dec; 15(48):20951-6. PubMed ID: 24201561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the barotropic ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated dimyristoylphosphatidylcholine (DMPC) monitored by time-resolved x-ray diffraction.
    Caffrey M; Hogan J; Mencke A
    Biophys J; 1991 Aug; 60(2):456-66. PubMed ID: 1912281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pentachlorophenol-induced change of zeta-potential and gel-to-fluid transition temperature in model lecithin membranes.
    Smejtek P; Barstad AW; Wang S
    Chem Biol Interact; 1989; 71(1):37-61. PubMed ID: 2776233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid vesicle aggregation induced by cooling.
    Howard FB; Levin IW
    Int J Mol Sci; 2010 Feb; 11(2):754-61. PubMed ID: 20386666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes.
    Chong PL
    Biochemistry; 1988 Jan; 27(1):399-404. PubMed ID: 3349041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the gel phases of ether- and ester-linked phosphatidylcholines.
    Ruocco MJ; Siminovitch DJ; Griffin RG
    Biochemistry; 1985 May; 24(10):2406-11. PubMed ID: 3839412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-controlled confocal Raman microscopy to detect phase transitions in phospholipid vesicles.
    Fox CB; Myers GA; Harris JM
    Appl Spectrosc; 2007 May; 61(5):465-9. PubMed ID: 17555614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of mixing of dipalmitoyl phosphatidylcholine and egg phosphatidylcholine in hydrated bilayers.
    Tinker DO; Low R
    Can J Biochem; 1982 May; 60(5):538-48. PubMed ID: 6896670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles.
    Cherney DP; Conboy JC; Harris JM
    Anal Chem; 2003 Dec; 75(23):6621-8. PubMed ID: 14640737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations.
    Khakbaz P; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1489-1501. PubMed ID: 29709614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.