These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38403876)

  • 1. Nanomedicine against biofilm infections: A roadmap of challenges and limitations.
    Blanco-Cabra N; Alcàcer-Almansa J; Admella J; Arévalo-Jaimes BV; Torrents E
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(1):e1944. PubMed ID: 38403876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promising Therapeutic Strategies Against Microbial Biofilm Challenges.
    Zhang K; Li X; Yu C; Wang Y
    Front Cell Infect Microbiol; 2020; 10():359. PubMed ID: 32850471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demolishing the great wall of biofilms in Gram-negative bacteria: To disrupt or disperse?
    Yu M; Chua SL
    Med Res Rev; 2020 May; 40(3):1103-1116. PubMed ID: 31746489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnologies for control of pathogenic microbial biofilms.
    Asare EO; Mun EA; Marsili E; Paunov VN
    J Mater Chem B; 2022 Jul; 10(27):5129-5153. PubMed ID: 35735175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections.
    Ramakrishnan R; Singh AK; Singh S; Chakravortty D; Das D
    J Biol Chem; 2022 Sep; 298(9):102352. PubMed ID: 35940306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models.
    Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ
    Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in nanotechnology for eradicating bacterial biofilm.
    Sahli C; Moya SE; Lomas JS; Gravier-Pelletier C; Briandet R; Hémadi M
    Theranostics; 2022; 12(5):2383-2405. PubMed ID: 35265216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Nanotherapeutics as Next-generation Anti-infective Agents: Current Trends and Future Prospectives.
    Subhaswaraj P; Syed A; Siddhardha B
    Curr Drug Discov Technol; 2020; 17(4):457-468. PubMed ID: 31309893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections.
    Wang X; Wang D; Lu H; Wang X; Wang X; Su J; Xia G
    Small; 2024 Mar; 20(10):e2305988. PubMed ID: 38178276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent nanotechnology-based strategies for interfering with the life cycle of bacterial biofilms.
    Wu J; Zhang B; Lin N; Gao J
    Biomater Sci; 2023 Feb; 11(5):1648-1664. PubMed ID: 36723075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents.
    Nourbakhsh F; Nasrollahzadeh MS; Tajani AS; Soheili V; Hadizadeh F
    Folia Microbiol (Praha); 2022 Aug; 67(4):535-554. PubMed ID: 35286577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging antibacterial nanomedicine for enhanced antibiotic therapy.
    Wang S; Gao Y; Jin Q; Ji J
    Biomater Sci; 2020 Dec; 8(24):6825-6839. PubMed ID: 32996490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ciprofloxacin Poly(β-amino ester) Conjugates Enhance Antibiofilm Activity and Slow the Development of Resistance.
    Kasza K; Richards B; Jones S; Romero M; Robertson SN; Hardie KR; Gurnani P; Cámara M; Alexander C
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5412-5425. PubMed ID: 38289032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterials with active targeting as advanced antimicrobials.
    Smerkova K; Dolezelikova K; Bozdechova L; Heger Z; Zurek L; Adam V
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Sep; 12(5):e1636. PubMed ID: 32363802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-Based Therapies for Wound Biofilm Infection: Opportunities and Challenges.
    Kim MH
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):294-304. PubMed ID: 26955044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents.
    Silva E; Teixeira JA; Pereira MO; Rocha CMR; Sousa AM
    Phytomedicine; 2023 Oct; 119():154973. PubMed ID: 37499434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections.
    Zhang J; Liu M; Guo H; Gao S; Hu Y; Zeng G; Yang D
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(3):e1968. PubMed ID: 38772565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-Enhanced Antibacterial Activity of Polymeric Nanoparticles for Eradicating Bacterial Biofilms.
    Gopalakrishnan S; Gupta A; Makabenta JMV; Park J; Amante JJ; Chattopadhyay AN; Matuwana D; Kearney CJ; Rotello VM
    Adv Healthc Mater; 2022 Nov; 11(21):e2201060. PubMed ID: 36049222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm-mediated infections by multidrug-resistant microbes: a comprehensive exploration and forward perspectives.
    Zafer MM; Mohamed GA; Ibrahim SRM; Ghosh S; Bornman C; Elfaky MA
    Arch Microbiol; 2024 Feb; 206(3):101. PubMed ID: 38353831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical-releasing systems for targeting biofilms.
    Fasiku Oluwaseun V; Omolo CA; Govender T
    J Control Release; 2020 Jun; 322():248-273. PubMed ID: 32243972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.