These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38404232)
1. Group-IIIA element doped BaSnS Xue Y; Lin C; Zhong J; Huang D; Persson C Phys Chem Chem Phys; 2024 Mar; 26(10):8380-8389. PubMed ID: 38404232 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning-Aided Band Gap Engineering of BaZrS Sharma S; Ward ZD; Bhimani K; Sharma M; Quinton J; Rhone TD; Shi SF; Terrones H; Koratkar N ACS Appl Mater Interfaces; 2023 Apr; 15(15):18962-18972. PubMed ID: 37014669 [TBL] [Abstract][Full Text] [Related]
3. Colloidal Nanoparticles for Intermediate Band Solar Cells. Vörös M; Galli G; Zimanyi GT ACS Nano; 2015 Jul; 9(7):6882-90. PubMed ID: 26042468 [TBL] [Abstract][Full Text] [Related]
4. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Rephaeli E; Fan S Opt Express; 2009 Aug; 17(17):15145-59. PubMed ID: 19687992 [TBL] [Abstract][Full Text] [Related]
5. First-Principles Study of Mn-Doped and Nb-Doped CsPbCl Patel MJ; Raval D; Gupta SK; Gajjar PN J Phys Chem Lett; 2021 Aug; 12(30):7319-7327. PubMed ID: 34319749 [TBL] [Abstract][Full Text] [Related]
6. Prediction of intermediate band in Ti/V doped γ-In Jebasty RM; Sjåstad AO; Vidya R RSC Adv; 2022 Jan; 12(3):1331-1340. PubMed ID: 35425181 [TBL] [Abstract][Full Text] [Related]
7. New strategies for colloidal-quantum-dot-based intermediate-band solar cells. Califano M; Skibinsky-Gitlin ES; Gómez-Campos FM; Rodríguez-Bolívar S J Chem Phys; 2019 Oct; 151(15):154101. PubMed ID: 31640383 [TBL] [Abstract][Full Text] [Related]
8. Half-filled intermediate bands in doped inorganic perovskites for solar cells. Ma X; Li Z Phys Chem Chem Phys; 2020 Nov; 22(41):23804-23809. PubMed ID: 33064115 [TBL] [Abstract][Full Text] [Related]
9. Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study. Jyothirmai MV; Saini H; Park N; Thapa R Sci Rep; 2019 Nov; 9(1):15983. PubMed ID: 31690735 [TBL] [Abstract][Full Text] [Related]
10. Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells. Yang Z; Rajagopal A; Jen AK Adv Mater; 2017 Dec; 29(47):. PubMed ID: 29134752 [TBL] [Abstract][Full Text] [Related]
11. Detailed balance model for intermediate band solar cells with photon conservation. Lin CC; Liu WL; Shih CY Opt Express; 2011 Aug; 19(18):16927-33. PubMed ID: 21935053 [TBL] [Abstract][Full Text] [Related]
12. The Important Role of Optical Absorption in Determining the Efficiency of Intermediate Band Solar Cells and a Design Principle for Perovskite Doping. Ma X; Li Z J Phys Chem Lett; 2022 Mar; 13(8):2012-2018. PubMed ID: 35195001 [TBL] [Abstract][Full Text] [Related]
13. The intermediate band solar cell: progress toward the realization of an attractive concept. Luque A; Martí A Adv Mater; 2010 Jan; 22(2):160-74. PubMed ID: 20217682 [TBL] [Abstract][Full Text] [Related]
14. Performance optimization of In(Ga)As quantum dot intermediate band solar cells. Yang G; Liu W; Bao Y; Chen X; Ji C; Wei B; Yang F; Wang X Discov Nano; 2023 Apr; 18(1):67. PubMed ID: 37382764 [TBL] [Abstract][Full Text] [Related]
15. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only). Olsson P; Guillemoles JF; Domain C J Phys Condens Matter; 2008 Feb; 20(6):064226. PubMed ID: 21693888 [TBL] [Abstract][Full Text] [Related]
16. Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. Yang C; Qin M; Wang Y; Wan D; Huang F; Lin J Sci Rep; 2013; 3():1286. PubMed ID: 23412565 [TBL] [Abstract][Full Text] [Related]
17. Doping Strategies in Sb Myagmarsereejid P; Ingram M; Batmunkh M; Zhong YL Small; 2021 Oct; 17(39):e2100241. PubMed ID: 34146387 [TBL] [Abstract][Full Text] [Related]
18. Investigation on Preparation and Performance of High Ga CIGS Absorbers and Their Solar Cells. Lv X; Zheng Z; Zhao M; Wang H; Zhuang D Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049100 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems. Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207 [TBL] [Abstract][Full Text] [Related]
20. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption. Hu K; Wang D; Zhao W; Gu Y; Bu K; Pan J; Qin P; Zhang X; Huang F Inorg Chem; 2018 Apr; 57(7):3956-3962. PubMed ID: 29561142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]