BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38404336)

  • 41. Ultrasensitive SERS detection of lysozyme by a target-triggering multiple cycle amplification strategy based on a gold substrate.
    He P; Zhang Y; Liu L; Qiao W; Zhang S
    Chemistry; 2013 Jun; 19(23):7452-60. PubMed ID: 23576076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Triggerable Mutually Amplified Signal Probe Based SERS-Microfluidics Platform for the Efficient Enrichment and Quantitative Detection of miRNA.
    Wang Z; Ye S; Zhang N; Liu X; Wang M
    Anal Chem; 2019 Apr; 91(8):5043-5050. PubMed ID: 30900865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy.
    Li S; Pang C; Ma X; Zhang Y; Xu Z; Li J; Zhang M; Wang M
    Mikrochim Acta; 2021 Nov; 188(12):438. PubMed ID: 34839414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells.
    Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S
    Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SERS-Based Immunoassay of Myocardial Infarction Biomarkers on a Microfluidic Chip with Plasmonic Nanostripe Microcones.
    Gao R; Mao Y; Ma C; Wang Y; Jia H; Chen X; Lu Y; Zhang D; Yu L
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55414-55422. PubMed ID: 36480247
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A portable SERS reader coupled with catalytic hairpin assembly for sensitive microRNA-21 lateral flow sensing.
    Wang W; Li Y; Nie A; Fan GC; Han H
    Analyst; 2021 Feb; 146(3):848-854. PubMed ID: 33319869
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum.
    Chen R; Shi H; Meng X; Su Y; Wang H; He Y
    Anal Chem; 2019 Mar; 91(5):3597-3603. PubMed ID: 30724066
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform.
    Sun D; Cao F; Tian Y; Li A; Xu W; Chen Q; Shi W; Xu S
    Anal Chem; 2019 Dec; 91(24):15484-15490. PubMed ID: 31751515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly sensitive and reliable detection of microRNA for clinically disease surveillance using SERS biosensor integrated with catalytic hairpin assembly amplification technology.
    Weng S; Lin D; Lai S; Tao H; Chen T; Peng M; Qiu S; Feng S
    Biosens Bioelectron; 2022 Jul; 208():114236. PubMed ID: 35381457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Attomolar Sensing Based on Liquid Interface-Assisted Surface-Enhanced Raman Scattering in Microfluidic Chip by Femtosecond Laser Processing.
    Bai S; Serien D; Ma Y; Obata K; Sugioka K
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42328-42338. PubMed ID: 32799517
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    Dogan Ü; Sucularlı F; Yildirim E; Cetin D; Suludere Z; Boyaci IH; Tamer U
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection.
    Yang H; Deng M; Ga S; Chen S; Kang L; Wang J; Xin W; Zhang T; You Z; An Y; Wang J; Cui D
    Nanoscale Res Lett; 2014 Mar; 9(1):138. PubMed ID: 24655483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe
    Chen Q; Yang M; Yang X; Li H; Guo Z; Rahma MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():147-153. PubMed ID: 28806700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasensitive detection of gastric cancer biomarkers
    Huang Y; Liu Z; Qin X; Liu J; Yang Y; Wei W
    Analyst; 2023 Jul; 148(14):3295-3305. PubMed ID: 37318011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions.
    Yan S; Chu F; Zhang H; Yuan Y; Huang Y; Liu A; Wang S; Li W; Li S; Wen W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117113. PubMed ID: 31141779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A multiple signal amplification sandwich-type SERS biosensor for femtomolar detection of miRNA.
    Shao H; Lin H; Guo Z; Lu J; Jia Y; Ye M; Su F; Niu L; Kang W; Wang S; Hu Y; Huang Y
    Biosens Bioelectron; 2019 Oct; 143():111616. PubMed ID: 31472412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High signal collection efficiency in a 3D SERS chip using a micro-reflector.
    Feng Y; Ping W; Zhiqiang Z; Danyang L; Li C; Shunbo L
    Opt Express; 2020 Dec; 28(26):39790-39798. PubMed ID: 33379521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR-/Cas12a-Mediated Liposome-Amplified Strategy for the Surface-Enhanced Raman Scattering and Naked-Eye Detection of Nucleic Acid and Application to Food Authenticity Screening.
    Liu J; Chen J; Wu D; Huang M; Chen J; Pan R; Wu Y; Li G
    Anal Chem; 2021 Jul; 93(29):10167-10174. PubMed ID: 34278781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21.
    Xu W; Zhang Y; Chen H; Dong J; Khan R; Shen J; Liu H
    Anal Bioanal Chem; 2022 Jun; 414(14):4079-4088. PubMed ID: 35419693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.