These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38404398)

  • 1. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy.
    Peng W; Zhou JW; Li ML; Sun L; Zhang YJ; Li JF
    Chem Sci; 2024 Feb; 15(8):2697-2711. PubMed ID: 38404398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets.
    Hu S; Elliott E; Sánchez-Iglesias A; Huang J; Guo C; Hou Y; Kamp M; Goerlitzer ESA; Bedingfield K; de Nijs B; Peng J; Demetriadou A; Liz-Marzán LM; Baumberg JJ
    Adv Sci (Weinh); 2023 Apr; 10(11):e2207178. PubMed ID: 36737852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds.
    Wang Z; Zhou W; Yang M; Yang Y; Hu J; Qin C; Zhang G; Liu S; Chen R; Xiao L
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasmall Mode Volumes in Plasmonic Cavities of Nanoparticle-On-Mirror Structures.
    Huang S; Ming T; Lin Y; Ling X; Ruan Q; Palacios T; Wang J; Dresselhaus M; Kong J
    Small; 2016 Oct; 12(37):5190-5199. PubMed ID: 27515573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying high-order plasmon modes in silver nanoparticle-over-mirror configuration.
    Huang Z; Lin X; Lu Z; Du R; Tang J; Zhou L; Zhang S
    Opt Express; 2024 May; 32(11):19746-19756. PubMed ID: 38859102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities.
    Ahmed A; Banjac K; Verlekar SS; Cometto FP; Lingenfelder M; Galland C
    ACS Photonics; 2021 Jun; 8(6):1863-1872. PubMed ID: 34164567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically Smooth Single-Crystalline Platform for Low-Loss Plasmonic Nanocavities.
    Liu L; Krasavin AV; Zheng J; Tong Y; Wang P; Wu X; Hecht B; Pan C; Li J; Li L; Guo X; Zayats AV; Tong L
    Nano Lett; 2022 Feb; 22(4):1786-1794. PubMed ID: 35129980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating Molecule-Plasmon Interactions in Nanocavities with 2 nm Spatial Resolution and at the Single-Molecule Level.
    Zhang FL; Yi J; Peng W; Radjenovic PM; Zhang H; Tian ZQ; Li JF
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12133-12137. PubMed ID: 31268611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Modal Nanoplasmonic Light Upconversion through Anti-Stokes Photoluminescence and Second-Harmonic Generation from Broadband Multiresonant Metal Nanocavities.
    Safiabadi Tali SA; Mudiyanselage RRHH; Qian Y; Smith NWG; Zhao Y; Morral A; Song J; Nie M; Magill BA; Khodaparast GA; Zhou W
    ACS Nano; 2023 Jun; 17(12):11362-11373. PubMed ID: 37154668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities.
    Mertens J; Demetriadou A; Bowman RW; Benz F; Kleemann ME; Tserkezis C; Shi Y; Yang HY; Hess O; Aizpurua J; Baumberg JJ
    Nano Lett; 2016 Sep; 16(9):5605-11. PubMed ID: 27529641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in plasmonic nanocavities for single-molecule spectroscopy.
    Maccaferri N; Barbillon G; Koya AN; Lu G; Acuna GP; Garoli D
    Nanoscale Adv; 2021 Feb; 3(3):633-642. PubMed ID: 36133836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the Real Plasmonic Field Transverse Distribution in a Nanocavity Using the Vibrational Stark Effect.
    Chen S; Xiao YH; Qin M; Zhou G; Dong R; Devasenathipathy R; Wu DY; Yang L
    J Phys Chem Lett; 2023 Feb; 14(7):1708-1713. PubMed ID: 36757268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Optomechanics Induced Hybrid Properties in Soft Materials Filled Plasmonic Nanocavities.
    Patra B; Kafle B; Habteyes TG
    Nano Lett; 2023 Jun; 23(11):5108-5115. PubMed ID: 37225673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand nanoparticle-on-mirror (NPoM) structure for cost-effective surface-enhanced Raman scattering substrates.
    Barik P; Pal S; Pradhan M
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120193. PubMed ID: 34314969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Raman Detection of 5-Amino-2-mercaptobenzimidazole Self-Assembled Monolayers in Nanoparticle-on-a-Mirror Plasmonic Cavity Driven by Dielectric Waveguides.
    Redolat J; Camarena-Pérez M; Griol A; Lozano MS; Gómez-Gómez MI; Vázquez-Lozano JE; Miele E; Baumberg JJ; Martínez A; Pinilla-Cienfuegos E
    Nano Lett; 2024 Mar; 24(12):3670-3677. PubMed ID: 38483128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS
    Deng F; Huang H; Chen JD; Liu S; Pang H; He X; Lan S
    Nano Lett; 2022 Jan; 22(1):220-228. PubMed ID: 34962400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Generation of Two-Photon Excited Phosphorescence from Molecules in Plasmonic Nanocavities.
    Ojambati OS; Chikkaraddy R; Deacon WM; Huang J; Wright D; Baumberg JJ
    Nano Lett; 2020 Jun; 20(6):4653-4658. PubMed ID: 32422048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.