These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38404401)

  • 1. Replica exchange molecular dynamics for Li-intercalation in graphite: a new solution for an old problem.
    Park H; Wragg DS; Koposov AY
    Chem Sci; 2024 Feb; 15(8):2745-2754. PubMed ID: 38404401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvated Ion Intercalation in Graphite: Sodium and Beyond.
    Park J; Xu ZL; Kang K
    Front Chem; 2020; 8():432. PubMed ID: 32509735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries.
    Hembram KP; Jung H; Yeo BC; Pai SJ; Lee HJ; Lee KR; Han SS
    Phys Chem Chem Phys; 2016 Aug; 18(31):21391-7. PubMed ID: 27425818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards hybrid quantum mechanical/molecular mechanical simulations of Li and Na intercalation in graphite - force field development and DFTB parametrisation.
    Purtscher FRS; Hofer TS
    Phys Chem Chem Phys; 2024 Jan; 26(3):1729-1740. PubMed ID: 38165417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation.
    Yang PY; Chiang YH; Pao CW; Chang CC
    J Chem Theory Comput; 2023 Jul; 19(14):4533-4545. PubMed ID: 37140982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li absorption and intercalation in single layer graphene and few layer graphene by first principles.
    Lee E; Persson KA
    Nano Lett; 2012 Sep; 12(9):4624-8. PubMed ID: 22920219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries.
    Duden EI; Savacı U; Turan S; Sevik C; Demiroglu I
    J Phys Condens Matter; 2022 Dec; 35(8):. PubMed ID: 36541523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercalation chemistry of graphite: alkali metal ions and beyond.
    Li Y; Lu Y; Adelhelm P; Titirici MM; Hu YS
    Chem Soc Rev; 2019 Aug; 48(17):4655-4687. PubMed ID: 31294739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Force Field Study of Li/C Systems for Electrical Energy Storage.
    Raju M; Ganesh P; Kent PR; van Duin AC
    J Chem Theory Comput; 2015 May; 11(5):2156-66. PubMed ID: 26574418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing Structural, Electronic, Transport and Mesoscale Properties of Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion Potential.
    Anniés S; Panosetti C; Voronenko M; Mauth D; Rahe C; Scheurer C
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries.
    Weng S; Yang G; Zhang S; Liu X; Zhang X; Liu Z; Cao M; Ateş MN; Li Y; Chen L; Wang Z; Wang X
    Nanomicro Lett; 2023 Sep; 15(1):215. PubMed ID: 37737445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
    Hui J; Burgess M; Zhang J; Rodríguez-López J
    ACS Nano; 2016 Apr; 10(4):4248-57. PubMed ID: 26943950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.
    Kim H; Yoon G; Lim K; Kang K
    Chem Commun (Camb); 2016 Oct; 52(85):12618-12621. PubMed ID: 27709171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The staging mechanism of AlCl
    Bhauriyal P; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Experiments and Theoretical Calculations to Investigate the Intercalation Behavior of Bis(trifluoromethanesulfonimide) Anion into Graphite Electrodes from Alkyl Phosphates.
    Zhang L; Wang Y; Wu Z; Wang H
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34197-34201. PubMed ID: 34261304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications.
    Zhou W; Sit PH
    ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.