BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38404715)

  • 21. Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers.
    Martin-Hernandez R; Espeso-Gil S; Domingo C; Latorre P; Hervas S; Hernandez Mora JR; Kotelnikova E
    Front Mol Biosci; 2023; 10():1258902. PubMed ID: 38028548
    [No Abstract]   [Full Text] [Related]  

  • 22. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition.
    Sun Q; Cheng L; Meng A; Ge S; Chen J; Zhang L; Gong P
    Front Genet; 2022; 13():1032768. PubMed ID: 36685873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud.
    Choi JM; Park C; Chae H
    PeerJ; 2024; 12():e17006. PubMed ID: 38426141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-View Spectral Clustering Based on Multi-Smooth Representation Fusion for Cancer Subtype Prediction.
    Liu J; Ge S; Cheng Y; Wang X
    Front Genet; 2021; 12():718915. PubMed ID: 34552619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative Network Fusion: A Multi-Omics Approach in Molecular Profiling.
    Chierici M; Bussola N; Marcolini A; Francescatto M; Zandonà A; Trastulla L; Agostinelli C; Jurman G; Furlanello C
    Front Oncol; 2020; 10():1065. PubMed ID: 32714870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CLCLSA: Cross-omics linked embedding with contrastive learning and self attention for integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Comput Biol Med; 2024 Mar; 170():108058. PubMed ID: 38295477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes.
    Guo Y; Zheng J; Shang X; Li Z
    Genes (Basel); 2018 Jun; 9(7):. PubMed ID: 29933539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep multi-view contrastive learning for cancer subtype identification.
    Chen W; Wang H; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37539822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss.
    Liu C; Wang L; Liu Z
    BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data.
    Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    ArXiv; 2023 Apr; ():. PubMed ID: 37090237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Res Sq; 2023 May; ():. PubMed ID: 37205427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recursive integration of synergised graph representations of multi-omics data for cancer subtypes identification.
    Madhumita ; Dwivedi A; Paul S
    Sci Rep; 2022 Sep; 12(1):15629. PubMed ID: 36115864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.