BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38404769)

  • 1. Liquid-core polymer nanocapsules prepared using flash nanoprecipitation.
    Taylor S; Chung Y; Becker S; Hughes E; Zhang X; Van Keuren E
    Heliyon; 2024 Feb; 10(4):e25869. PubMed ID: 38404769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple but precise engineering of functional nanocapsules through nanoprecipitation.
    Yan X; Delgado M; Fu A; Alcouffe P; Gouin SG; Fleury E; Katz JL; Ganachaud F; Bernard J
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6910-3. PubMed ID: 24862553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of nanocapsules via emulsifier-free miniemulsion polymerization.
    Barari M; Faridi-Majidi R; Madani M; Sharifi-Sanjani N; Oghabian MA
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4348-52. PubMed ID: 19916455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric nanocapsules containing an antiseptic agent obtained by controlled nanoprecipitation onto water-in-oil miniemulsion droplets.
    Paiphansiri U; Tangboriboonrat P; Landfester K
    Macromol Biosci; 2006 Jan; 6(1):33-40. PubMed ID: 16374768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Flash NanoPrecipitation for the scalable formulation of stable core-shell nanoparticles with core loadings up to 90.
    Caggiano NJ; Nayagam SK; Wang LZ; Wilson BK; Lewis P; Jahangir S; Priestley RD; Prud'homme RK; Ristroph KD
    Int J Pharm; 2023 Jun; 640():122985. PubMed ID: 37121493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells.
    Dowding PJ; Atkin R; Vincent B; Bouillot P
    Langmuir; 2004 Dec; 20(26):11374-9. PubMed ID: 15595759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and melting transitions of hexadecane droplets in polystyrene nanocapsules.
    Fette EV; Pham A; Adalsteinsson T
    J Phys Chem B; 2008 May; 112(17):5403-11. PubMed ID: 18393480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic Pressure as Driving Force for Reducing the Size of Nanoparticles in Emulsions.
    Doan-Nguyen TP; Mantala K; Atithep T; Crespy D
    ACS Nano; 2022 Dec; ():. PubMed ID: 36472438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of nanocapsules containing the two-phase core materials.
    Wang JP; Zhao XP; Wang DW
    J Microencapsul; 2007 Dec; 24(8):757-66. PubMed ID: 17926167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Poly(methylmethacrylate) Microcapsules with Liquid Cores.
    Loxley A; Vincent B
    J Colloid Interface Sci; 1998 Dec; 208(1):49-62. PubMed ID: 9820748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Aqueous Nanoprecipitation: Spontaneous Formation of Hydrogen-Bonded Nanoparticles and Nanocapsules Mediated by Phase Separation of Poly(N-Isopropylacrylamide).
    Wang Y; Sukhishvili SA
    Macromol Rapid Commun; 2017 Aug; 38(16):. PubMed ID: 28605156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle Formation Mechanisms in the Nanoprecipitation of Polystyrene.
    Zhao C; Melis S; Hughes EP; Li T; Zhang X; Olmsted PD; Van Keuren E
    Langmuir; 2020 Nov; 36(44):13210-13217. PubMed ID: 33118817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of monodisperse hollow carbon nanocapsules by using protective silica shells.
    Quan B; Nam GE; Choi HJ; Piao Y
    Chem Asian J; 2013 Apr; 8(4):765-70. PubMed ID: 23345002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles.
    Wilson BK; Prud'homme RK
    J Colloid Interface Sci; 2021 Dec; 604():208-220. PubMed ID: 34265681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile Polymer Nanocapsules via Redox Competition.
    Zhou J; Xu M; Jin Z; Borum RM; Avakyan N; Cheng Y; Yim W; He T; Zhou J; Wu Z; Mantri Y; Jokerst JV
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26357-26362. PubMed ID: 34580967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEGylated nanocapsules of perfluorooctyl bromide: Mechanism of formation, influence of polymer concentration on morphology and mechanical properties.
    Diou O; Brûlet A; Pehau-Arnaudet G; Morvan E; Berti R; Astafyeva K; Taulier N; Fattal E; Tsapis N
    Colloids Surf B Biointerfaces; 2016 Oct; 146():762-9. PubMed ID: 27451363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Hybrid Glyconanocapsules by a One-Pot Nanoprecipitation Process.
    Yan X; Alcouffe P; Bernard J; Ganachaud F
    Biomacromolecules; 2020 Nov; 21(11):4591-4598. PubMed ID: 32578984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring Properties of Hyaluronate-Based Core-Shell Nanocapsules with Encapsulation of Mixtures of Edible Oils.
    Bednorz J; Smela K; Zapotoczny S
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template.
    Hazarika M; Arunbabu D; Jana T
    J Colloid Interface Sci; 2010 Nov; 351(2):374-83. PubMed ID: 20800238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ouzo effect: A tool to elaborate high-payload nanocapsules.
    Goubault C; Sciortino F; Mongin O; Jarry U; Bostoën M; Jakobczyk H; Burel A; Dutertre S; Troadec MB; Kahn ML; Chevance S; Gauffre F
    J Control Release; 2020 Aug; 324():430-439. PubMed ID: 32439361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.