BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38404798)

  • 1. The air we breathe: Numerical investigation of ventilation strategies to mitigate airborne dispersion of MERS-CoV in inpatient wards.
    Satheesan MK; Tsang TW; Wong LT; Mui KW
    Heliyon; 2024 Feb; 10(4):e26159. PubMed ID: 38404798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards.
    Satheesan MK; Mui KW; Wong LT
    Build Simul; 2020; 13(4):887-896. PubMed ID: 32211123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room.
    Thatiparti DS; Ghia U; Mead KR
    Sci Technol Built Environ; 2016; 23(2):355-366. PubMed ID: 28736744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventilation of multiple-bed hospital wards: review and analysis.
    Beggs CB; Kerr KG; Noakes CJ; Hathway EA; Sleigh PA
    Am J Infect Control; 2008 May; 36(4):250-9. PubMed ID: 18455045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural ventilation for the prevention of airborne contagion.
    Escombe AR; Oeser CC; Gilman RH; Navincopa M; Ticona E; Pan W; Martínez C; Chacaltana J; Rodríguez R; Moore DA; Friedland JS; Evans CA
    PLoS Med; 2007 Feb; 4(2):e68. PubMed ID: 17326709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Effectiveness of Ceiling-Ventilated Mock Airborne Infection Isolation Room in Preventing Hospital-Acquired Influenza Transmission to Health Care Workers.
    Thatiparti DS; Ghia U; Mead KR
    ASHRAE Trans; 2016; 122(2):35-46. PubMed ID: 28529344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural ventilation for reducing airborne infection in hospitals.
    Qian H; Li Y; Seto WH; Ching P; Ching WH; Sun HQ
    Build Environ; 2010 Mar; 45(3):559-565. PubMed ID: 32288008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the effects of transient weather conditions on airborne transmission risk in naturally ventilated hospitals.
    Edwards AJ; King MF; López-García M; Peckham D; Noakes CJ
    J Hosp Infect; 2024 Jun; 148():1-10. PubMed ID: 38447806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of displacement ventilation systems in airborne infection risk in hospital rooms.
    Villafruela JM; Olmedo I; Berlanga FA; Ruiz de Adana M
    PLoS One; 2019; 14(1):e0211390. PubMed ID: 30699182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Wall-Based Attachment Ventilation: A Comparative Study on Its Effectiveness in Airborne Infection Isolation Rooms with Negative Pressure.
    Zhang Y; Han O; Li A; Hou L; Olofsson T; Zhang L; Lei W
    Engineering (Beijing); 2022 Jan; 8():130-137. PubMed ID: 33520328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic performance of a ventilation system for droplet control by coughing in a hospital isolation ward.
    Song Y; Yang C; Li H; Chen H; Shen S; Hou Y; Wang J
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73812-73824. PubMed ID: 37195609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilation Rates and Airflow Pathways in Patient Rooms: A Case Study of Bioaerosol Containment and Removal.
    Mousavi ES; Grosskopf KR
    Ann Occup Hyg; 2015 Nov; 59(9):1190-9. PubMed ID: 26187326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing impact of ventilation on airborne transmission of SARS-CoV-2: a cross-sectional analysis of naturally ventilated healthcare settings in Bangladesh.
    Styczynski A; Hemlock C; Hoque KI; Verma R; LeBoa C; Bhuiyan MOF; Nag A; Harun MGD; Amin MB; Andrews JR
    BMJ Open; 2022 Apr; 12(4):e055206. PubMed ID: 35428628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rethinking hospital general ward ventilation design using computational fluid dynamics.
    Yam R; Yuen PL; Yung R; Choy T
    J Hosp Infect; 2011 Jan; 77(1):31-6. PubMed ID: 21129819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of droplets/droplet nuclei from coughing and breathing of patients with different postures in a hospital isolation ward.
    Liu H; Liu Z; Wang Y; Hu C; Rong R
    Build Environ; 2022 Nov; 225():109690. PubMed ID: 36246843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: Effect of supply and exhaust air diffuser configurations.
    Cho J
    Appl Therm Eng; 2019 Feb; 148():208-218. PubMed ID: 32288589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems.
    Qian H; Li Y; Nielsen PV; Hyldgaard CE; Wong TW; Chwang AT
    Indoor Air; 2006 Apr; 16(2):111-28. PubMed ID: 16507039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong.
    Li Y; Huang X; Yu IT; Wong TW; Qian H
    Indoor Air; 2005 Apr; 15(2):83-95. PubMed ID: 15737151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of air changes per hour (ACH) in possible transmission of airborne infections.
    Memarzadeh F; Xu W
    Build Simul; 2012; 5(1):15-28. PubMed ID: 32218911
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.