These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38404837)
1. Flexoelectric and size-dependent effects on hygro-thermal vibration of variable thickness fluid-infiltrated porous metal foam nanoplates. Thi TN; Tran VK; Pham QH Heliyon; 2024 Feb; 10(4):e26150. PubMed ID: 38404837 [TBL] [Abstract][Full Text] [Related]
2. Nonlocal Strain Gradient Model for the Nonlinear Static Analysis of a Circular/Annular Nanoplate. Sadeghian M; Palevicius A; Janusas G Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241675 [TBL] [Abstract][Full Text] [Related]
3. Dynamic response of sandwich functionally graded nanoplate under thermal environments and elastic foundations using dynamic stiffness method. Rai S; Gupta A Sci Rep; 2024 Sep; 14(1):21689. PubMed ID: 39289400 [TBL] [Abstract][Full Text] [Related]
4. Influence of various setting angles on vibration behavior of rotating graphene sheet: continuum modeling and molecular dynamics simulation. Akbarshahi A; Rajabpour A; Ghadiri M; Barooti MM J Mol Model; 2019 May; 25(5):141. PubMed ID: 31044274 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model. Sadeghian M; Palevicius A; Janusas G Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763953 [TBL] [Abstract][Full Text] [Related]
6. Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory. Nami MR; Janghorban M Beilstein J Nanotechnol; 2013 Dec; 4():968-73. PubMed ID: 24455455 [TBL] [Abstract][Full Text] [Related]
7. Nonlocal Strain Gradient Theory for the Bending of Functionally Graded Porous Nanoplates. Alghanmi RA Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500099 [TBL] [Abstract][Full Text] [Related]
8. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity. Penna R; Feo L; Lovisi G; Fabbrocino F Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434 [TBL] [Abstract][Full Text] [Related]
9. Bending and Vibration Analysis of Flexoelectric Beam Structure on Linear Elastic Substrates. Zhang M; Zhou Z Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744529 [TBL] [Abstract][Full Text] [Related]
10. Vibration and Buckling of Shear Deformable Functionally Graded Nanoporous Metal Foam Nanoshells. Zhang Y; Zhang F Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781404 [No Abstract] [Full Text] [Related]
11. Nonlinear electromechanical analysis of axisymmetric thin circular plate based on flexoelectric theory. Ji X Sci Rep; 2021 Nov; 11(1):21762. PubMed ID: 34741112 [TBL] [Abstract][Full Text] [Related]
12. Size-Dependent Free Vibration and Buckling of Three-Dimensional Graphene Foam Microshells Based on Modified Couple Stress Theory. Liu Y; Wang Y Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30832376 [TBL] [Abstract][Full Text] [Related]
13. Thermo-Electro-Mechanical Vibrations of Porous Functionally Graded Piezoelectric Nanoshells. Liu YF; Wang YQ Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791652 [TBL] [Abstract][Full Text] [Related]
14. Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods. Ragb O; Mohamed M; Matbuly MS Heliyon; 2019 Jun; 5(6):e01856. PubMed ID: 31211259 [TBL] [Abstract][Full Text] [Related]
15. Vibration Analysis of a Unimorph Nanobeam with a Dielectric Layer of Both Flexoelectricity and Piezoelectricity. Naderi A; Quoc-Thai T; Zhuang X; Jiang X Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176367 [TBL] [Abstract][Full Text] [Related]
16. Electromechanical Analysis of Flexoelectric Nanosensors Based on Nonlocal Elasticity Theory. Su Y; Zhou Z Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291573 [TBL] [Abstract][Full Text] [Related]
17. Hygro-Thermal Vibrations of Porous FG Nano-Beams Based on Local/Nonlocal Stress Gradient Theory of Elasticity. Penna R; Feo L; Lovisi G; Fabbrocino F Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918408 [TBL] [Abstract][Full Text] [Related]