BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38404855)

  • 1. Plant-based calcium silicate from rice husk ash: A green adsorbent for free fatty acid recovery from waste frying oil.
    Zainal ZS; Hoo P; Ahmad AL; Abdullah AZ; Ng Q; Shuit S; Enche Ab Rahim SK; Andas J
    Heliyon; 2024 Feb; 10(4):e26591. PubMed ID: 38404855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash.
    Mane VS; Deo Mall I; Chandra Srivastava V
    J Environ Manage; 2007 Sep; 84(4):390-400. PubMed ID: 17000044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient eco-friendly adsorbent material based on waste copper slag-biomass ash geopolymer: dye sorption capacity and sustainable properties.
    Mullaimalar A; Thanigaiselvan R; Karuppaiyan J; Kiruthika S; Jeyalakshmi R; Albeshr MF
    Environ Geochem Health; 2024 Mar; 46(3):110. PubMed ID: 38460044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient sequestration of malachite green in aqueous solution by laterite-rice husk ash-based alkali-activated materials: parameters and mechanism.
    Tome S; Shikuku V; Tamaguelon HD; Akiri S; Etoh MA; RĂ¼scher C; Etame J
    Environ Sci Pollut Res Int; 2023 May; 30(25):67263-67277. PubMed ID: 37103713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption mechanism of phosphorus on biomass ash modified with lanthanum immobilized by chitosan.
    Jiang Y; Di J; Ma Y; Fu S; Dong Y; Yuan B
    Environ Sci Pollut Res Int; 2023 May; 30(23):63915-63931. PubMed ID: 37059955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents.
    Ismail SA; Ali RF
    Sci Technol Adv Mater; 2015 Jun; 16(3):034602. PubMed ID: 27877789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Adsorption characteristics of the antibiotic sulfanilamide onto rice husk ash].
    Ji YX; Wang FH; Zhang F; Zhang YH; Wang GX; Gu ZZ
    Huan Jing Ke Xue; 2013 Oct; 34(10):3912-20. PubMed ID: 24364310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison on the Surface Structure Properties along with Fe(II) and Mn(II) Removal Characteristics of Rice Husk Ash, Inactive
    Jiang Z; Cao B; Su G; Lu Y; Zhao J; Shan D; Zhang X; Wang Z; Zhang Y
    Biomed Res Int; 2016; 2016():7183951. PubMed ID: 28042571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk.
    Akhtar M; Iqbal S; Kausar A; Bhanger MI; Shaheen MA
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):149-55. PubMed ID: 19734025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sorption of lead(II) ions on rice husk ash.
    Naiya TK; Bhattacharya AK; Mandal S; Das SK
    J Hazard Mater; 2009 Apr; 163(2-3):1254-64. PubMed ID: 18783880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The adsorption of palmytic acid on rice husk ash chemically modified with Al(III) ion using the sol-gel technique.
    Adam F; Chua JH
    J Colloid Interface Sci; 2004 Dec; 280(1):55-61. PubMed ID: 15476773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humic acids removal from water by aminopropyl functionalized rice husk ash.
    Imyim A; Prapalimrungsi E
    J Hazard Mater; 2010 Dec; 184(1-3):775-781. PubMed ID: 20869173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agro-industrial waste: a low cost adsorbent for effective removal of 4-chloro-2-methylphenoxyacetic acid herbicide in batch and packed bed modes.
    Deokar SK; Mandavgane SA; Kulkarni BD
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16164-75. PubMed ID: 27151241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Madhu J; Santhanam A; Natarajan M; Velauthapillai D
    RSC Adv; 2022 Aug; 12(36):23221-23239. PubMed ID: 36090442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of Fe(II) and Mn(II) ions from aqueous solution by rice husk ash.
    Zhang Y; Zhao J; Jiang Z; Shan D; Lu Y
    Biomed Res Int; 2014; 2014():973095. PubMed ID: 24982918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Methylene Blue Adsorption and pH Neutralization of Contaminated Water by Rice Husk Ash.
    Hongo T; Moriura M; Hatada Y; Abiko H
    ACS Omega; 2021 Aug; 6(33):21604-21612. PubMed ID: 34471764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ofloxacin adsorptive interaction with rice husk ash: Parametric and exhausted adsorbent disposability study.
    Kaur G; Singh N; Rajor A
    J Contam Hydrol; 2021 Jan; 236():103737. PubMed ID: 33213886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption-desorption and leaching potential of glyphosate and aminomethylphosphonic acid in acidic Malaysian soil amended with cow dung and rice husk ash.
    Garba J; Samsuri AW; Othman R; Ahmad Hamdani MS
    Environ Monit Assess; 2018 Oct; 190(11):676. PubMed ID: 30368595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modified polythiophene nanocomposite using HPC and DBSNa for heavy metal ion removal.
    Arabahmadi V; Ghorbani M
    Water Sci Technol; 2017 Jun; 75(12):2765-2776. PubMed ID: 28659516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): parametric, kinetic, equilibrium and thermodynamic aspects.
    Lataye DH; Mishra IM; Mall ID
    J Hazard Mater; 2008 Jun; 154(1-3):858-70. PubMed ID: 18082952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.