These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38404865)
1. Renewable energy sources integration via machine learning modelling: A systematic literature review. Alazemi T; Darwish M; Radi M Heliyon; 2024 Feb; 10(4):e26088. PubMed ID: 38404865 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources. R Singh A; Kumar RS; Bajaj M; Khadse CB; Zaitsev I Sci Rep; 2024 Aug; 14(1):19207. PubMed ID: 39160194 [TBL] [Abstract][Full Text] [Related]
3. Towards Automated Model Selection for Wind Speed and Solar Irradiance Forecasting. Blazakis K; Schetakis N; Bonfini P; Stavrakakis K; Karapidakis E; Katsigiannis Y Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124081 [TBL] [Abstract][Full Text] [Related]
4. A survey on advanced machine learning and deep learning techniques assisting in renewable energy generation. B SR Environ Sci Pollut Res Int; 2023 Sep; 30(41):93407-93421. PubMed ID: 37552450 [TBL] [Abstract][Full Text] [Related]
5. An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting. Li G; Yu L; Zhang Y; Sun P; Li R; Zhang Y; Li G; Wang P Environ Sci Pollut Res Int; 2023 Mar; 30(14):41937-41953. PubMed ID: 36640232 [TBL] [Abstract][Full Text] [Related]
6. Optimizing solar power efficiency in smart grids using hybrid machine learning models for accurate energy generation prediction. Bhutta MS; Li Y; Abubakar M; Almasoudi FM; Alatawi KSS; Altimania MR; Al-Barashi M Sci Rep; 2024 Jul; 14(1):17101. PubMed ID: 39048605 [TBL] [Abstract][Full Text] [Related]
7. Large-scale wind power grid integration challenges and their solution: a detailed review. Mastoi MS; Zhuang S; Haris M; Hassan M; Ali A Environ Sci Pollut Res Int; 2023 Oct; 30(47):103424-103462. PubMed ID: 37697200 [TBL] [Abstract][Full Text] [Related]
8. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
9. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals. Quan H; Srinivasan D; Khosravi A IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2123-35. PubMed ID: 25532191 [TBL] [Abstract][Full Text] [Related]
10. Solar and wind power data from the Chinese State Grid Renewable Energy Generation Forecasting Competition. Chen Y; Xu J Sci Data; 2022 Sep; 9(1):577. PubMed ID: 36130945 [TBL] [Abstract][Full Text] [Related]
11. Development of multi-model ensembles using tree-based machine learning methods to assess the future renewable energy potential: case of the East Thrace, Turkey. Guven D Environ Sci Pollut Res Int; 2023 Aug; 30(37):87314-87329. PubMed ID: 37422556 [TBL] [Abstract][Full Text] [Related]
12. Photovoltaic Power Generation Forecasting Using a Novel Hybrid Intelligent Model in Smart Grid. Boum AT; Foba Kakeu VJ; Mbey CF; Yem Souhe FG Comput Intell Neurosci; 2022; 2022():7495548. PubMed ID: 36248947 [TBL] [Abstract][Full Text] [Related]
13. Performance enhancement of short-term wind speed forecasting model using Realtime data. Ashraf M; Raza B; Arshad M; Khan BM; Zaidi SSH PLoS One; 2024; 19(5):e0302664. PubMed ID: 38820359 [TBL] [Abstract][Full Text] [Related]
14. Solar power forecasting beneath diverse weather conditions using GD and LM-artificial neural networks. Sharma N; Puri V; Mahajan S; Abualigah L; Zitar RA; Gandomi AH Sci Rep; 2023 May; 13(1):8517. PubMed ID: 37231039 [TBL] [Abstract][Full Text] [Related]
15. Developing a strategy based on weighted mean of vectors (INFO) optimizer for optimal power flow considering uncertainty of renewable energy generation. Farhat M; Kamel S; Atallah AM; Abdelaziz AY; Tostado-Véliz M Neural Comput Appl; 2023; 35(19):13955-13981. PubMed ID: 37234073 [TBL] [Abstract][Full Text] [Related]
16. Comparative optimization of global solar radiation forecasting using machine learning and time series models. Belmahdi B; Louzazni M; El Bouardi A Environ Sci Pollut Res Int; 2022 Feb; 29(10):14871-14888. PubMed ID: 34625894 [TBL] [Abstract][Full Text] [Related]
17. Weather forecasting based on data-driven and physics-informed reservoir computing models. Mammedov YD; Olugu EU; Farah GA Environ Sci Pollut Res Int; 2022 Apr; 29(16):24131-24144. PubMed ID: 34825327 [TBL] [Abstract][Full Text] [Related]
18. A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids. Quan H; Khosravi A; Yang D; Srinivasan D IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4582-4599. PubMed ID: 31870999 [TBL] [Abstract][Full Text] [Related]
19. Forecasting of solar radiation for a cleaner environment using robust machine learning techniques. Thangavelu M; Parthiban VJ; Kesavaraman D; Murugesan T Environ Sci Pollut Res Int; 2023 Mar; 30(11):30919-30932. PubMed ID: 36441304 [TBL] [Abstract][Full Text] [Related]
20. Increasing the Accuracy of Hourly Multi-Output Solar Power Forecast with Physics-Informed Machine Learning. Pombo DV; Bindner HW; Spataru SV; Sørensen PE; Bacher P Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]