These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38404966)

  • 1. Arginase-1 specific CD8+ T cells react toward malignant and regulatory myeloid cells.
    Glöckner HJ; Martinenaite E; Landkildehus Lisle T; Grauslund J; Ahmad S; Met Ö; Thor Straten P; Hald Andersen M
    Oncoimmunology; 2024; 13(1):2318053. PubMed ID: 38404966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment.
    Steggerda SM; Bennett MK; Chen J; Emberley E; Huang T; Janes JR; Li W; MacKinnon AL; Makkouk A; Marguier G; Murray PJ; Neou S; Pan A; Parlati F; Rodriguez MLM; Van de Velde LA; Wang T; Works M; Zhang J; Zhang W; Gross MI
    J Immunother Cancer; 2017 Dec; 5(1):101. PubMed ID: 29254508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginase 1-Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti-PD-1 Checkpoint Blockade.
    Aaboe Jørgensen M; Ugel S; Linder Hübbe M; Carretta M; Perez-Penco M; Weis-Banke SE; Martinenaite E; Kopp K; Chapellier M; Adamo A; De Sanctis F; Frusteri C; Iezzi M; Zocca MB; Hargbøll Madsen D; Wakatsuki Pedersen A; Bronte V; Andersen MH
    Cancer Immunol Res; 2021 Nov; 9(11):1316-1326. PubMed ID: 34518197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginase-2-specific cytotoxic T cells specifically recognize functional regulatory T cells.
    Weis-Banke SE; Lisle TL; Perez-Penco M; Schina A; Hübbe ML; Siersbæk M; Holmström MO; Jørgensen MA; Marie Svane I; Met Ö; Ødum N; Madsen DH; Donia M; Grøntved L; Andersen MH
    J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36316062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment.
    Su X; Xu Y; Fox GC; Xiang J; Kwakwa KA; Davis JL; Belle JI; Lee WC; Wong WH; Fontana F; Hernandez-Aya LF; Kobayashi T; Tomasson HM; Su J; Bakewell SJ; Stewart SA; Egbulefu C; Karmakar P; Meyer MA; Veis DJ; DeNardo DG; Lanza GM; Achilefu S; Weilbaecher KN
    J Clin Invest; 2021 Oct; 131(20):. PubMed ID: 34520398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginase 1 is a key driver of immune suppression in pancreatic cancer.
    Menjivar RE; Nwosu ZC; Du W; Donahue KL; Hong HS; Espinoza C; Brown K; Velez-Delgado A; Yan W; Lima F; Bischoff A; Kadiyala P; Salas-Escabillas D; Crawford HC; Bednar F; Carpenter E; Zhang Y; Halbrook CJ; Lyssiotis CA; Pasca di Magliano M
    Elife; 2023 Feb; 12():. PubMed ID: 36727849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells.
    Burrack KS; Tan JJ; McCarthy MK; Her Z; Berger JN; Ng LF; Morrison TE
    PLoS Pathog; 2015 Oct; 11(10):e1005191. PubMed ID: 26436766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphonuclear-MDSCs Facilitate Tumor Regrowth After Radiation by Suppressing CD8
    Zhang Md J; Zhang Md L; Yang Md Y; Liu Md Q; Ma Md H; Huang Md A; Zhao Md Y; Xia Md Z; Liu Md T; Wu Md G
    Int J Radiat Oncol Biol Phys; 2021 Apr; 109(5):1533-1546. PubMed ID: 33238192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Multiplexed Analysis of Indoleamine 2,3-Dioxygenase (IDO) and Arginase-1 (ARG1) Expression and Myeloid Cell Infiltration in Colorectal Cancer.
    Elomaa H; Härkönen J; Väyrynen SA; Ahtiainen M; Ogino S; Nowak JA; Lau MC; Helminen O; Wirta EV; Seppälä TT; Böhm J; Mecklin JP; Kuopio T; Väyrynen JP
    Mod Pathol; 2024 Apr; 37(4):100450. PubMed ID: 38369188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An arginase1- and PD-L1-derived peptide-based vaccine for myeloproliferative neoplasms: A first-in-man clinical trial.
    Grauslund JH; Holmström MO; Martinenaite E; Lisle TL; Glöckner HJ; El Fassi D; Klausen U; Mortensen REJ; Jørgensen N; Kjær L; Skov V; Svane IM; Hasselbalch HC; Andersen MH
    Front Immunol; 2023; 14():1117466. PubMed ID: 36911725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutralization of NET-associated human ARG1 enhances cancer immunotherapy.
    Canè S; Barouni RM; Fabbi M; Cuozzo J; Fracasso G; Adamo A; Ugel S; Trovato R; De Sanctis F; Giacca M; Lawlor R; Scarpa A; Rusev B; Lionetto G; Paiella S; Salvia R; Bassi C; Mandruzzato S; Ferrini S; Bronte V
    Sci Transl Med; 2023 Mar; 15(687):eabq6221. PubMed ID: 36921034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloid arginase-1 controls excessive inflammation and modulates T cell responses in Pseudomonas aeruginosa pneumonia.
    Haydar D; Gonzalez R; Garvy BA; Garneau-Tsodikova S; Thamban Chandrika N; Bocklage TJ; Feola DJ
    Immunobiology; 2021 Jan; 226(1):152034. PubMed ID: 33278710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ginseng-derived nanoparticles reprogram macrophages to regulate arginase-1 release for ameliorating T cell exhaustion in tumor microenvironment.
    Lv Y; Li M; Weng L; Huang H; Mao Y; Yang DA; Wei Q; Zhao M; Wei Q; Rui K; Han X; Fan W; Cai X; Cao P; Cao M
    J Exp Clin Cancer Res; 2023 Nov; 42(1):322. PubMed ID: 38012650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased myeloid-derived suppressor cells in patients with myelodysplastic syndromes suppress CD8+ T lymphocyte function through the STAT3-ARG1 pathway.
    Qi X; Jiang H; Liu P; Xie N; Fu R; Wang H; Liu C; Zhang T; Wang H; Shao Z
    Leuk Lymphoma; 2021 Jan; 62(1):218-223. PubMed ID: 32985300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased number of arginase 1-positive cells in the stroma of carcinomas compared to precursor lesions and nonneoplastic tissues.
    Jang TJ; Kim SA; Kim MK
    Pathol Res Pract; 2018 Aug; 214(8):1179-1184. PubMed ID: 29970307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines.
    Weis-Banke SE; Hübbe ML; Holmström MO; Jørgensen MA; Bendtsen SK; Martinenaite E; Carretta M; Svane IM; Ødum N; Pedersen AW; Met Ö; Madsen DH; Andersen MH
    Oncoimmunology; 2020 Jun; 9(1):1771142. PubMed ID: 32923127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14⁻/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer.
    Liu CY; Wang YM; Wang CL; Feng PH; Ko HW; Liu YH; Wu YC; Chu Y; Chung FT; Kuo CH; Lee KY; Lin SM; Lin HC; Wang CH; Yu CT; Kuo HP
    J Cancer Res Clin Oncol; 2010 Jan; 136(1):35-45. PubMed ID: 19572148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Oral Arginase 1/2 Inhibitor Enhances the Antitumor Effect of PD-1 Inhibition in Murine Experimental Gliomas by Altering the Immunosuppressive Environment.
    Pilanc P; Wojnicki K; Roura AJ; Cyranowski S; Ellert-Miklaszewska A; Ochocka N; Gielniewski B; Grzybowski MM; Błaszczyk R; Stańczak PS; Dobrzański P; Kaminska B
    Front Oncol; 2021; 11():703465. PubMed ID: 34504786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope.
    Martinenaite E; Ahmad SM; Bendtsen SK; Jørgensen MA; Weis-Banke SE; Svane IM; Andersen MH
    Cancer Immunol Immunother; 2019 Nov; 68(11):1901-1907. PubMed ID: 31690955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginase-1 targeting peptide vaccine in patients with metastatic solid tumors - A phase I trial.
    Lorentzen CL; Martinenaite E; Kjeldsen JW; Holmstroem RB; Mørk SK; Pedersen AW; Ehrnrooth E; Andersen MH; Svane IM
    Front Immunol; 2022; 13():1023023. PubMed ID: 36330525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.