These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38404966)

  • 21. Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy.
    Martí i Líndez AA; Dunand-Sauthier I; Conti M; Gobet F; Núñez N; Hannich JT; Riezman H; Geiger R; Piersigilli A; Hahn K; Lemeille S; Becher B; De Smedt T; Hugues S; Reith W
    JCI Insight; 2019 Nov; 4(24):. PubMed ID: 31751318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis.
    Ma C; Hunt JB; Kovalenko A; Liang H; Selenica MB; Orr MB; Zhang B; Gensel JC; Feola DJ; Gordon MN; Morgan D; Bickford PC; Lee DC
    Front Immunol; 2021; 12():628156. PubMed ID: 34046031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delicaflavone reactivates anti-tumor immune responses by abrogating monocytic myeloid cell-mediated immunosuppression.
    Li L; You W; Wang X; Zou Y; Yao H; Lan H; Lin X; Zhang Q; Chen B
    Phytomedicine; 2023 Jan; 108():154508. PubMed ID: 36332384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thymosin α1 promotes the activation of myeloid-derived suppressor cells in a Lewis lung cancer model by upregulating Arginase 1.
    Yuan C; Zheng Y; Zhang B; Shao L; Liu Y; Tian T; Gu X; Li X; Fan K
    Biochem Biophys Res Commun; 2015 Aug; 464(1):249-55. PubMed ID: 26111447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma.
    Czystowska-Kuzmicz M; Sosnowska A; Nowis D; Ramji K; Szajnik M; Chlebowska-Tuz J; Wolinska E; Gaj P; Grazul M; Pilch Z; Zerrouqi A; Graczyk-Jarzynka A; Soroczynska K; Cierniak S; Koktysz R; Elishaev E; Gruca S; Stefanowicz A; Blaszczyk R; Borek B; Gzik A; Whiteside T; Golab J
    Nat Commun; 2019 Jul; 10(1):3000. PubMed ID: 31278254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma.
    Sosnowska A; Chlebowska-Tuz J; Matryba P; Pilch Z; Greig A; Wolny A; Grzywa TM; Rydzynska Z; Sokolowska O; Rygiel TP; Grzybowski M; Stanczak P; Blaszczyk R; Nowis D; Golab J
    Oncoimmunology; 2021; 10(1):1956143. PubMed ID: 34367736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The T-win® technology: immune-modulating vaccines.
    Andersen MH
    Semin Immunopathol; 2019 Jan; 41(1):87-95. PubMed ID: 29968045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice.
    Bronte V; Serafini P; De Santo C; Marigo I; Tosello V; Mazzoni A; Segal DM; Staib C; Lowel M; Sutter G; Colombo MP; Zanovello P
    J Immunol; 2003 Jan; 170(1):270-8. PubMed ID: 12496409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation.
    Barron L; Smith AM; El Kasmi KC; Qualls JE; Huang X; Cheever A; Borthwick LA; Wilson MS; Murray PJ; Wynn TA
    PLoS One; 2013; 8(4):e61961. PubMed ID: 23637937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced suppressive capacity of tumor-infiltrating myeloid-derived suppressor cells compared with their peripheral counterparts.
    Maenhout SK; Van Lint S; Emeagi PU; Thielemans K; Aerts JL
    Int J Cancer; 2014 Mar; 134(5):1077-90. PubMed ID: 23983191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diverse facets of MDSC in different phases of chronic HBV infection: Impact on HBV-specific T-cell response and homing.
    Pal S; Dey D; Chakraborty BC; Nandi M; Khatun M; Banerjee S; Santra A; Ghosh R; Ahammed SM; Chowdhury A; Datta S
    Hepatology; 2022 Sep; 76(3):759-774. PubMed ID: 35000202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Cyclooxygenase 2, Programmed Cell Death Ligand 1, and Arginase 1 Expression in Human Pituitary Adenoma.
    Zhao G; Chen W; He J; Cui C; Zhao L; Zhao Y; Sun C; Nie D; Jin F; Kong L
    World Neurosurg; 2020 Dec; 144():e660-e673. PubMed ID: 32920160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer.
    Gannon PO; Godin-Ethier J; Hassler M; Delvoye N; Aversa M; Poisson AO; Péant B; Alam Fahmy M; Saad F; Lapointe R; Mes-Masson AM
    PLoS One; 2010 Aug; 5(8):e12107. PubMed ID: 20711410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression.
    Bak SP; Alonso A; Turk MJ; Berwin B
    Mol Immunol; 2008 Dec; 46(2):258-68. PubMed ID: 18824264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment.
    Bendtsen SK; Perez-Penco M; Hübbe ML; Martinenaite E; Orebo Holmström M; Weis-Banke SE; Grønne Dahlager Jørgensen N; Jørgensen MA; Munir Ahmad S; Jensen KM; Friese C; Lundsager MT; Johansen AZ; Carretta M; Ødum N; Met Ö; Svane IM; Madsen DH; Andersen MH
    Oncoimmunology; 2022; 11(1):2026020. PubMed ID: 35111385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross talk between histone deacetylase 4 and STAT6 in the transcriptional regulation of arginase 1 during mouse dendritic cell differentiation.
    Yang Q; Wei J; Zhong L; Shi M; Zhou P; Zuo S; Wu K; Zhu M; Huang X; Yu Y; Zhang H; Yin H; Zhou J
    Mol Cell Biol; 2015 Jan; 35(1):63-75. PubMed ID: 25332236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myeloid Cells Orchestrate Systemic Immunosuppression, Impairing the Efficacy of Immunotherapy against HPV
    Galliverti G; Wullschleger S; Tichet M; Murugan D; Zangger N; Horton W; Korman AJ; Coussens LM; Swartz MA; Hanahan D
    Cancer Immunol Res; 2020 Jan; 8(1):131-145. PubMed ID: 31771984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of CD4
    West EE; Merle NS; Kamiński MM; Palacios G; Kumar D; Wang L; Bibby JA; Overdahl K; Jarmusch AK; Freeley S; Lee DY; Thompson JW; Yu ZX; Taylor N; Sitbon M; Green DR; Bohrer A; Mayer-Barber KD; Afzali B; Kazemian M; Scholl-Buergi S; Karall D; Huemer M; Kemper C
    Immunity; 2023 Sep; 56(9):2036-2053.e12. PubMed ID: 37572656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CD4
    Kruse B; Buzzai AC; Shridhar N; Braun AD; Gellert S; Knauth K; Pozniak J; Peters J; Dittmann P; Mengoni M; van der Sluis TC; Höhn S; Antoranz A; Krone A; Fu Y; Yu D; Essand M; Geffers R; Mougiakakos D; Kahlfuß S; Kashkar H; Gaffal E; Bosisio FM; Bechter O; Rambow F; Marine JC; Kastenmüller W; Müller AJ; Tüting T
    Nature; 2023 Jun; 618(7967):1033-1040. PubMed ID: 37316667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of antitumor immunity in lung cancer by targeting myeloid-derived suppressor cell pathways.
    Sawant A; Schafer CC; Jin TH; Zmijewski J; Tse HM; Roth J; Sun Z; Siegal GP; Thannickal VJ; Grant SC; Ponnazhagan S; Deshane JS
    Cancer Res; 2013 Nov; 73(22):6609-20. PubMed ID: 24085788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.