These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38405218)

  • 1. Exploring the performance of automatic speaker recognition using twin speech and deep learning-based artificial neural networks.
    Cavalcanti JC; da Silva RR; Eriksson A; Barbosa PA
    Front Artif Intell; 2024; 7():1287877. PubMed ID: 38405218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-parametric analysis of speech timing in inter-talker identical twin pairs and cross-pair comparisons: Some forensic implications.
    Cavalcanti JC; Eriksson A; Barbosa PA
    PLoS One; 2022; 17(1):e0262800. PubMed ID: 35061853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic analysis of vowel formant frequencies in genetically-related and non-genetically related speakers with implications for forensic speaker comparison.
    Cavalcanti JC; Eriksson A; Barbosa PA
    PLoS One; 2021; 16(2):e0246645. PubMed ID: 33600430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Euclidean Distances as measures of speaker similarity including identical twin pairs: A forensic investigation using source and filter voice characteristics.
    San Segundo E; Tsanas A; Gómez-Vilda P
    Forensic Sci Int; 2017 Jan; 270():25-38. PubMed ID: 27912151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the speaker discriminatory power asymmetry regarding acoustic-phonetic parameters and the impact of speaking style.
    Cavalcanti JC; Eriksson A; Barbosa PA
    Front Psychol; 2023; 14():1101187. PubMed ID: 37138997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiparametric Analysis of Speaking Fundamental Frequency in Genetically Related Speakers Using Different Speech Materials: Some Forensic Implications.
    Cavalcanti JC; Eriksson A; Barbosa PA
    J Voice; 2024 Jan; 38(1):243.e11-243.e29. PubMed ID: 34629229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simplified Vocal Profile Analysis Protocol for the Assessment of Voice Quality and Speaker Similarity.
    San Segundo E; Mompean JA
    J Voice; 2017 Sep; 31(5):644.e11-644.e27. PubMed ID: 28215407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling speech imitation and ecological learning of auditory-motor maps.
    Canevari C; Badino L; D'Ausilio A; Fadiga L; Metta G
    Front Psychol; 2013; 4():364. PubMed ID: 23818883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonetic variability constrained bottleneck features for joint speaker recognition and physical task stress detection.
    Zhang C; Hansen JHL
    J Acoust Soc Am; 2020 Nov; 148(5):2912. PubMed ID: 33261416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A test of the effectiveness of speaker verification for differentiating between identical twins.
    Ariyaeeinia A; Morrison C; Malegaonkar A; Black S
    Sci Justice; 2008 Dec; 48(4):182-6. PubMed ID: 19192680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimising Speaker-Dependent Feature Extraction Parameters to Improve Automatic Speech Recognition Performance for People with Dysarthria.
    Marini M; Vanello N; Fanucci L
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lexical tone recognition with an artificial neural network.
    Zhou N; Zhang W; Lee CY; Xu L
    Ear Hear; 2008 Jun; 29(3):326-35. PubMed ID: 18453884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of face mask on speech production and its implication for forensic speaker identification-A cross-linguistic study.
    Geng P; Lu Q; Guo H; Zeng J
    PLoS One; 2023; 18(3):e0283724. PubMed ID: 36996037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Completely Automated Vowel Analysis for Sociophonetics: Using End-to-End Speech Recognition Systems With DARLA.
    Coto-Solano R; Stanford JN; Reddy SK
    Front Artif Intell; 2021; 4():662097. PubMed ID: 34632373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Speaker Recognition System Based on Gaussian Mixture Models, Cepstral Analysis, and Genetic Selection of Distinctive Features.
    Kamiński KA; Dobrowolski AP
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra- and inter-speaker variations of formant pattern for lateral syllables in Standard Chinese.
    Zhang C; van de Weijer J; Cui J
    Forensic Sci Int; 2006 May; 158(2-3):117-24. PubMed ID: 16039081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic hole filling for sparse enrollment data using a cohort universal corpus for speaker recognition.
    Suh JW; Hansen JH
    J Acoust Soc Am; 2012 Feb; 131(2):1515-28. PubMed ID: 22352521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proof-of-concept study for automatic speech recognition to transcribe AAC speakers' speech from high-technology AAC systems.
    Chen SK; Saeli C; Hu G
    Assist Technol; 2024 Jul; 36(4):319-326. PubMed ID: 37748185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Lombard reflex and its role on human listeners and automatic speech recognizers.
    Junqua JC
    J Acoust Soc Am; 1993 Jan; 93(1):510-24. PubMed ID: 8423266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.