These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38405365)

  • 1. Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology.
    Paktunc D; Coumans JP; Carter D; Zagrtdenov N; Duguay D
    ACS Eng Au; 2024 Feb; 4(1):125-138. PubMed ID: 38405365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe
    Lan Y; Zhang L; Li X; Liu W; Su X; Lin Z
    Sci Total Environ; 2022 Mar; 813():152637. PubMed ID: 34963612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cr(VI) formation in ferrochrome-smelter dusts.
    Berryman EJ; Paktunc D
    J Hazard Mater; 2022 Jan; 422():126873. PubMed ID: 34418832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel reductive alkali roasting of chromite ores for carcinogen-free Cr
    Escudero-Castejón L; Taylor J; Sánchez-Segado S; Jha A
    J Hazard Mater; 2021 Feb; 403():123589. PubMed ID: 32795821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration.
    Bansal N; Coetzee JJ; Chirwa EMN
    Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite.
    Su C; Ludwig RD
    Environ Sci Technol; 2005 Aug; 39(16):6208-16. PubMed ID: 16173583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexavalent chromium removal by ferrochromium slag.
    Erdem M; Altundoğan HS; Turan MD; Tümen F
    J Hazard Mater; 2005 Nov; 126(1-3):176-82. PubMed ID: 16098660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment Characteristics of Cr in Chromium Slag after Pre-Reduction and Melting/Magnetic Separation Treatment.
    Hu S; Wang D; Li X; Zhao W; Qu T; Wang Y
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Decarbonization Approach for FeCr Production.
    Güney H; Güner Ö; Boncuk FF; Kan S; Benzeşik K; Yücel O
    J Sustain Metall; 2023; 9(1):216-229. PubMed ID: 37519415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrochrome slag: A critical review of its properties, environmental issues and sustainable utilization.
    Das SK; Tripathi AK; Kandi SK; Mustakim SM; Bhoi B; Rajput P
    J Environ Manage; 2023 Jan; 326(Pt A):116674. PubMed ID: 36410302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium recovery from ferrochrome slag: kinetics and possible use in a circular economy.
    Moyo LB; Simate GS; Mamvura TA
    Heliyon; 2022 Dec; 8(12):e12176. PubMed ID: 36578389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.
    Li B; Wang X; Wang H; Wei Y; Hu J
    Sci Rep; 2017 May; 7(1):2406. PubMed ID: 28546556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel process to recycle coal gasification fine slag by preparing Si-Fe-Al-Ca alloy.
    Wang Y; Zhang Z; Li L; Guo X; Wei D; Kong J; Du H; Wang H; Zhuang Y; Xing P
    J Environ Manage; 2023 Jul; 337():117681. PubMed ID: 36931070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental impact of ferrochrome slag in road construction.
    Lind BB; Fällman AM; Larsson LB
    Waste Manag; 2001; 21(3):255-64. PubMed ID: 11280517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO
    Gao Y; Yang C; Zhang C; Qin Q; Chen GZ
    Phys Chem Chem Phys; 2017 Jun; 19(24):15876-15890. PubMed ID: 28589201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between chromite and Mn(II/IV) under anoxic, oxic and anoxic-oxic conditions: Dissolution, oxidation and pH dependence.
    Ao M; Sun S; Deng T; Li J; Liu T; Tang Y; Wang S; Qiu R
    J Environ Manage; 2024 Jan; 349():119475. PubMed ID: 37922821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Hydration Mechanisms of Low Carbon Ferrochrome Slag-Granulated Blast Furnace Slag Composite Cementitious Materials.
    Ren C; Li K; Wang Y; Li Y; Tong J; Cai J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue from the soda ash process.
    Du Y; Chrysochoou M
    J Hazard Mater; 2020 Jul; 393():122385. PubMed ID: 32114129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Cr and molten salt interfacial interactions for molten salt applications.
    Liu X; Liu Y; Gibson LD; Ge M; Olds D; Leshchev D; Bai J; Plonka AM; Halstenberg P; Zhong H; Ghose S; Lin CH; Zheng X; Xiao X; Lee WK; Dai S; Samolyuk GD; Bryantsev VS; Frenkel AI; Chen-Wiegart YK
    Phys Chem Chem Phys; 2024 Jun; ():. PubMed ID: 38829308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.