These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38405396)

  • 1. Postfabrication Tuning of Circular Bragg Resonators for Enhanced Emitter-Cavity Coupling.
    Krieger TM; Weidinger C; Oberleitner T; Undeutsch G; Rota MB; Tajik N; Aigner M; Buchinger Q; Schimpf C; Garcia AJ; Covre da Silva SF; Höfling S; Huber-Loyola T; Trotta R; Rastelli A
    ACS Photonics; 2024 Feb; 11(2):596-603. PubMed ID: 38405396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators.
    Parto K; Azzam SI; Lewis N; Patel SD; Umezawa S; Watanabe K; Taniguchi T; Moody G
    Nano Lett; 2022 Dec; 22(23):9748-9756. PubMed ID: 36318636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride.
    Fröch JE; Li C; Chen Y; Toth M; Kianinia M; Kim S; Aharonovich I
    Small; 2022 Jan; 18(2):e2104805. PubMed ID: 34837313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Dot Photoluminescence Enhancement in GaAs Nanopillar Oligomers Driven by Collective Magnetic Modes.
    Kroychuk MK; Shorokhov AS; Yagudin DF; Rakhlin MV; Klimko GV; Toropov AA; Shubina TV; Fedyanin AA
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators.
    Pitanti A; Ghulinyan M; Navarro-Urrios D; Pucker G; Pavesi L
    Phys Rev Lett; 2010 Mar; 104(10):103901. PubMed ID: 20366425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective active resonance tuning for multi-mode nonlinear photonic cavities.
    Logan AD; Yama NS; Fu KC
    Opt Express; 2024 Apr; 32(8):13396-13407. PubMed ID: 38859311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance designs for fiber-pigtailed quantum-light sources based on quantum dots in electrically-controlled circular Bragg gratings.
    Rickert L; Betz F; Plock M; Burger S; Heindel T
    Opt Express; 2023 Apr; 31(9):14750-14770. PubMed ID: 37157333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purcell-Enhanced and Indistinguishable Single-Photon Generation from Quantum Dots Coupled to On-Chip Integrated Ring Resonators.
    Dusanowski Ł; Köck D; Shin E; Kwon SH; Schneider C; Höfling S
    Nano Lett; 2020 Sep; 20(9):6357-6363. PubMed ID: 32706592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal design method for bright quantum light sources based on circular Bragg grating cavities.
    Shih CW; Rodt S; Reitzenstein S
    Opt Express; 2023 Oct; 31(22):35552-35564. PubMed ID: 38017723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings.
    Rickert L; Kupko T; Rodt S; Reitzenstein S; Heindel T
    Opt Express; 2019 Dec; 27(25):36824-36837. PubMed ID: 31873454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast and Bright Quantum Emitters from the Cavity-Coupled Single Perovskite Nanocrystals.
    Jun S; Kim J; Choi M; Kim BS; Park J; Kim D; Shin B; Cho YH
    ACS Nano; 2024 Jan; 18(2):1396-1403. PubMed ID: 37943020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of spontaneous emission in Bragg onion resonators.
    Liang W; Huang Y; Yariv A; Xu Y; Lin SY
    Opt Express; 2006 Aug; 14(16):7398-419. PubMed ID: 19529108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating.
    Kolatschek S; Nawrath C; Bauer S; Huang J; Fischer J; Sittig R; Jetter M; Portalupi SL; Michler P
    Nano Lett; 2021 Sep; 21(18):7740-7745. PubMed ID: 34478316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic Fabrication of a Coupled Cavity-Emitter System in Hexagonal Boron Nitride.
    Nonahal M; Horder J; Gale A; Ding L; Li C; Hennessey M; Ha ST; Toth M; Aharonovich I
    Nano Lett; 2023 Jul; 23(14):6645-6650. PubMed ID: 37418703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission.
    Sapienza L; Davanço M; Badolato A; Srinivasan K
    Nat Commun; 2015 Jul; 6():7833. PubMed ID: 26211442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal tuning of a fiber-integrated Fabry-Pérot cavity.
    Singer C; Goetz A; Prasad AS; Becker M; Rothhardt M; Skoff SM
    Opt Express; 2021 Aug; 29(18):28778-28786. PubMed ID: 34615000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring light-matter interaction with a nanoscale plasmon resonator.
    de Leon NP; Shields BJ; Yu CL; Englund DE; Akimov AV; Lukin MD; Park H
    Phys Rev Lett; 2012 Jun; 108(22):226803. PubMed ID: 23003638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microcavity optomechanics with a suspended photonic crystal mirror above a distributed Bragg reflector.
    Kini Manjeshwar S; Ciers A; Monsel J; Pfeifer H; Peralle C; Wang SM; Tassin P; Wieczorek W
    Opt Express; 2023 Sep; 31(19):30212-30226. PubMed ID: 37710568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile tunable microcavity for investigation of light-matter interaction.
    Mochalov KE; Vaskan IS; Dovzhenko DS; Rakovich YP; Nabiev I
    Rev Sci Instrum; 2018 May; 89(5):053105. PubMed ID: 29864833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.