These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38405434)
1. Negative enthalpy alloys and local chemical ordering: a concept and route leading to synergy of strength and ductility. An Z; Yang T; Shi C; Mao S; Wang L; Li A; Li W; Xue X; Sun M; Bai Y; He Y; Ren F; Lu Z; Yan M; Ren Y; Liu CT; Zhang Z; Han X Natl Sci Rev; 2024 Apr; 11(4):nwae026. PubMed ID: 38405434 [TBL] [Abstract][Full Text] [Related]
2. Negative mixing enthalpy solid solutions deliver high strength and ductility. An Z; Li A; Mao S; Yang T; Zhu L; Wang R; Wu Z; Zhang B; Shao R; Jiang C; Cao B; Shi C; Ren Y; Liu C; Long H; Zhang J; Li W; He F; Sun L; Zhao J; Yang L; Zhou X; Wei X; Chen Y; Lu Z; Ren F; Liu CT; Zhang Z; Han X Nature; 2024 Jan; 625(7996):697-702. PubMed ID: 38172639 [TBL] [Abstract][Full Text] [Related]
3. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217 [TBL] [Abstract][Full Text] [Related]
4. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610 [TBL] [Abstract][Full Text] [Related]
5. Harnessing instability for work hardening in multi-principal element alloys. Xu B; Duan H; Chen X; Wang J; Ma Y; Jiang P; Yuan F; Wang Y; Ren Y; Du K; Wei Y; Wu X Nat Mater; 2024 Jun; 23(6):755-761. PubMed ID: 38605195 [TBL] [Abstract][Full Text] [Related]
6. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. An Z; Mao S; Yang T; Liu CT; Zhang B; Ma E; Zhou H; Zhang Z; Wang L; Han X Mater Horiz; 2021 Mar; 8(3):948-955. PubMed ID: 34821325 [TBL] [Abstract][Full Text] [Related]
7. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Ma E; Wu X Nat Commun; 2019 Dec; 10(1):5623. PubMed ID: 31819051 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous enhancement of strength and ductility Yang L; Liang D; Cheng Z; Duan R; Zhong C; Luan J; Jiao Z; Ren F Fundam Res; 2024 Jan; 4(1):147-157. PubMed ID: 38933833 [TBL] [Abstract][Full Text] [Related]
9. Ultrastrong and ductile medium-entropy alloys via hierarchical ordering. Gu L; Zhao Y; Li Y; Hou R; Liang F; Zhang R; Wu Y; Fan Y; Liang N; Zhou B; Chen Y; Sha G; Chen G; Wang Y; Chen X Sci Adv; 2024 May; 10(22):eadn7553. PubMed ID: 38809970 [TBL] [Abstract][Full Text] [Related]
10. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Wang L; Ding J; Chen S; Jin K; Zhang Q; Cui J; Wang B; Chen B; Li T; Ren Y; Zheng S; Ming K; Lu W; Hou J; Sha G; Liang J; Wang L; Xue Y; Ma E Nat Mater; 2023 Aug; 22(8):950-957. PubMed ID: 37037961 [TBL] [Abstract][Full Text] [Related]
11. Strength-Ductility Synergy in High Entropy Alloys by Tuning the Thermo-Mechanical Process Parameters: A Comprehensive Review. Sabban R; Dash K; Suwas S; Murty BS J Indian Inst Sci; 2022; 102(1):91-116. PubMed ID: 35345876 [TBL] [Abstract][Full Text] [Related]
13. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Chen S; Aitken ZH; Pattamatta S; Wu Z; Yu ZG; Srolovitz DJ; Liaw PK; Zhang YW Nat Commun; 2021 Aug; 12(1):4953. PubMed ID: 34400654 [TBL] [Abstract][Full Text] [Related]
14. Overcoming strength-ductility tradeoff with high pressure thermal treatment. Tang Y; Wang H; Ouyang X; Wang C; Huang Q; Zhao Q; Liu X; Zhu Q; Hou Z; Wu J; Zhang Z; Li H; Yang Y; Yang W; Gao H; Zhou H Nat Commun; 2024 May; 15(1):3932. PubMed ID: 38729936 [TBL] [Abstract][Full Text] [Related]
15. Microstructural Characteristics of High-Pressure Die Casting with High Strength-Ductility Synergy Properties: A Review. Yang Q; Wu X; Qiu X Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903068 [TBL] [Abstract][Full Text] [Related]
16. Strength-Ductility Mechanism of CoCrFeMnNi High-Entropy Alloys with Inverse Gradient-Grained Structures. Chen J; Hu Y; Wang P; Li J; Zheng Y; Lu C; Zhang B; Shen J; Cao Y Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612208 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength. Peng S; Wei Y; Gao H Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5204-5209. PubMed ID: 32094194 [TBL] [Abstract][Full Text] [Related]
18. Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy. Pei Z; Zhao S; Detrois M; Jablonski PD; Hawk JA; Alman DE; Asta M; Minor AM; Gao MC Nat Commun; 2023 May; 14(1):2519. PubMed ID: 37130855 [TBL] [Abstract][Full Text] [Related]
19. Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering. Dasari S; Sharma A; Jiang C; Gwalani B; Lin WC; Lo KC; Gorsse S; Yeh AC; Srinivasan SG; Banerjee R Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2211787120. PubMed ID: 37252982 [TBL] [Abstract][Full Text] [Related]
20. Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy. Soni V; Senkov ON; Gwalani B; Miracle DB; Banerjee R Sci Rep; 2018 Jun; 8(1):8816. PubMed ID: 29891942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]