BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38405492)

  • 1. Nitrogen-Doped Activated Hollow Carbon Nanofibers with Controlled Hierarchical Pore Structures for High-Performance, Binder-Free, Flexible Supercapacitor Electrodes.
    Lim T; Seo BH; Kim SJ; Han S; Lee W; Suk JW
    ACS Omega; 2024 Feb; 9(7):8247-8254. PubMed ID: 38405492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.
    Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Supercapacitors Based on Porous Hollow Carbon Nanofiber Electrodes with High Specific Capacitance and Large Energy Density.
    Liu Y; Liu Q; Wang L; Yang X; Yang W; Zheng J; Hou H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4777-4786. PubMed ID: 31898452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.
    Cai J; Niu H; Li Z; Du Y; Cizek P; Xie Z; Xiong H; Lin T
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14946-53. PubMed ID: 26087346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study.
    Daraghmeh A; Hussain S; Saadeddin I; Servera L; Xuriguera E; Cornet A; Cirera A
    Nanoscale Res Lett; 2017 Dec; 12(1):639. PubMed ID: 29288337
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Liu H; Song W; Xing A
    RSC Adv; 2019 Oct; 9(57):33539-33548. PubMed ID: 35529146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zhu J; Zhang Q; Chen H; Zhang R; Liu L; Yu J
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43634-43645. PubMed ID: 32909429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO
    Bing X; Wei Y; Wang M; Xu S; Long D; Wang J; Qiao W; Ling L
    J Colloid Interface Sci; 2017 Feb; 488():207-217. PubMed ID: 27835813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-Standing and Heteroatoms-Doped Carbon Nanofiber Networks as a Binder-Free Flexible Electrode for High-Performance Supercapacitors.
    Yan X; You H; Liu W; Wang X; Wu D
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31443570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties.
    Bai Z; Liu S; Chen P; Cheng G; Wu G; Li H; Liu Y
    Nanotechnology; 2020 Jul; 31(30):305705. PubMed ID: 32235076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical hollow-tubular porous carbon microtubes prepared
    Xiao X; Song L; Wang Q; Wang Z; Wang H; Chu J; Liu J; Liu X; Bian Z; Zhao X
    RSC Adv; 2022 May; 12(25):16257-16266. PubMed ID: 35733697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors.
    Dai P; Xue Y; Zhang S; Cao L; Tang D; Gu X; Li L; Wang X; Jiang X; Liu D; Kong L; Bando Y; Golberg D; Zhao X
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37046-37056. PubMed ID: 30295458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical core-shell nickel hydroxide@nitrogen-doped hollow carbon spheres composite for high-performance hybrid supercapacitor.
    Wang G; Yan Z; Ding Y; Xu Z; Li Z
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):286-296. PubMed ID: 35998454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers.
    Sahoo MK; Rao GR
    Nanoscale Adv; 2021 Sep; 3(18):5417-5429. PubMed ID: 36132632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes.
    Iqbal N; Wang X; Ahmed Babar A; Yu J; Ding B
    J Colloid Interface Sci; 2016 Aug; 476():87-93. PubMed ID: 27209394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanofibers derived from cellulose via molten-salt method as supercapacitor electrode.
    Zhong Y; Wang T; Yan M; Huang X; Zhou X
    Int J Biol Macromol; 2022 May; 207():541-548. PubMed ID: 35296438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical energy storage performance of carbon nanofiber electrodes derived from 6FDA-durene.
    Jung KH; Panapitiya N; Ferraris JP
    Nanotechnology; 2018 Jul; 29(27):275701. PubMed ID: 29629876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural bio-waste-derived 3D N/O self-doped heteroatom honeycomb-like porous carbon with tuned huge surface area for high-performance supercapacitor.
    Prabu S; Chiang KY
    Chemosphere; 2024 Aug; 361():142400. PubMed ID: 38789052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications.
    Magana JR; Kolen'ko YV; Deepak FL; Solans C; Shrestha RG; Hill JP; Ariga K; Shrestha LK; Rodriguez-Abreu C
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31231-31238. PubMed ID: 27775339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.