These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38405492)

  • 1. Nitrogen-Doped Activated Hollow Carbon Nanofibers with Controlled Hierarchical Pore Structures for High-Performance, Binder-Free, Flexible Supercapacitor Electrodes.
    Lim T; Seo BH; Kim SJ; Han S; Lee W; Suk JW
    ACS Omega; 2024 Feb; 9(7):8247-8254. PubMed ID: 38405492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.
    Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Supercapacitors Based on Porous Hollow Carbon Nanofiber Electrodes with High Specific Capacitance and Large Energy Density.
    Liu Y; Liu Q; Wang L; Yang X; Yang W; Zheng J; Hou H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4777-4786. PubMed ID: 31898452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.
    Cai J; Niu H; Li Z; Du Y; Cizek P; Xie Z; Xiong H; Lin T
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14946-53. PubMed ID: 26087346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study.
    Daraghmeh A; Hussain S; Saadeddin I; Servera L; Xuriguera E; Cornet A; Cirera A
    Nanoscale Res Lett; 2017 Dec; 12(1):639. PubMed ID: 29288337
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Liu H; Song W; Xing A
    RSC Adv; 2019 Oct; 9(57):33539-33548. PubMed ID: 35529146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zhu J; Zhang Q; Chen H; Zhang R; Liu L; Yu J
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43634-43645. PubMed ID: 32909429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO
    Bing X; Wei Y; Wang M; Xu S; Long D; Wang J; Qiao W; Ling L
    J Colloid Interface Sci; 2017 Feb; 488():207-217. PubMed ID: 27835813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-Standing and Heteroatoms-Doped Carbon Nanofiber Networks as a Binder-Free Flexible Electrode for High-Performance Supercapacitors.
    Yan X; You H; Liu W; Wang X; Wu D
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31443570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties.
    Bai Z; Liu S; Chen P; Cheng G; Wu G; Li H; Liu Y
    Nanotechnology; 2020 Jul; 31(30):305705. PubMed ID: 32235076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical hollow-tubular porous carbon microtubes prepared
    Xiao X; Song L; Wang Q; Wang Z; Wang H; Chu J; Liu J; Liu X; Bian Z; Zhao X
    RSC Adv; 2022 May; 12(25):16257-16266. PubMed ID: 35733697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors.
    Dai P; Xue Y; Zhang S; Cao L; Tang D; Gu X; Li L; Wang X; Jiang X; Liu D; Kong L; Bando Y; Golberg D; Zhao X
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37046-37056. PubMed ID: 30295458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical core-shell nickel hydroxide@nitrogen-doped hollow carbon spheres composite for high-performance hybrid supercapacitor.
    Wang G; Yan Z; Ding Y; Xu Z; Li Z
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):286-296. PubMed ID: 35998454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers.
    Sahoo MK; Rao GR
    Nanoscale Adv; 2021 Sep; 3(18):5417-5429. PubMed ID: 36132632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes.
    Iqbal N; Wang X; Ahmed Babar A; Yu J; Ding B
    J Colloid Interface Sci; 2016 Aug; 476():87-93. PubMed ID: 27209394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanofibers derived from cellulose via molten-salt method as supercapacitor electrode.
    Zhong Y; Wang T; Yan M; Huang X; Zhou X
    Int J Biol Macromol; 2022 May; 207():541-548. PubMed ID: 35296438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical energy storage performance of carbon nanofiber electrodes derived from 6FDA-durene.
    Jung KH; Panapitiya N; Ferraris JP
    Nanotechnology; 2018 Jul; 29(27):275701. PubMed ID: 29629876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural bio-waste-derived 3D N/O self-doped heteroatom honeycomb-like porous carbon with tuned huge surface area for high-performance supercapacitor.
    Prabu S; Chiang KY
    Chemosphere; 2024 Aug; 361():142400. PubMed ID: 38789052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications.
    Magana JR; Kolen'ko YV; Deepak FL; Solans C; Shrestha RG; Hill JP; Ariga K; Shrestha LK; Rodriguez-Abreu C
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31231-31238. PubMed ID: 27775339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.