These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38405507)

  • 1. Oil Shale In Situ Production Using a Novel Flow-Heat Coupling Approach.
    Jia B; Huang Z
    ACS Omega; 2024 Feb; 9(7):7705-7718. PubMed ID: 38405507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Effective Pyrolysis Zone and Heat Loss in Oil Shale Reservoir with Random Fractures.
    Yu H; Tang J; Zhang X; Ren L; Zhang X
    ACS Omega; 2023 Dec; 8(48):45687-45699. PubMed ID: 38075776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.
    Sun YH; Bai FT; Lü XS; Li Q; Liu YM; Guo MY; Guo W; Liu BC
    Sci Rep; 2015 Feb; 5():8290. PubMed ID: 25656294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Behavior of Oil Shale Pyrolysis under Low-Temperature Co-Current Oxidizing Conditions.
    Guo W; Yang Q; Zhang X; Xu S; Deng S; Li Q
    ACS Omega; 2021 Jul; 6(28):18074-18083. PubMed ID: 34308041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Pyrolysis-Mechanics-Seepage Behavior of Oil Shale in a Closed System Subject to Real-Time Temperature Variations.
    Wang L; Su J; Yang D
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release characteristics of Pb and BETX from in situ oil shale transformation on groundwater environment.
    Wang H; Zhang W; Qiu S; Liang X
    Sci Rep; 2021 Aug; 11(1):16166. PubMed ID: 34373512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic mechanism evaluate the feasibility of oil shale pyrolysis by topochemical heat.
    Zhao S; Lü X; Sun Y; Huang J
    Sci Rep; 2021 Mar; 11(1):5365. PubMed ID: 33686148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release performance and kinetic behavior of volatile products from controlled pressure pyrolysis of oil shale in nitrogen atmosphere.
    Zhao S; Su J; Wu J
    Sci Rep; 2023 Jul; 13(1):10676. PubMed ID: 37393308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Numerical Simulation of Hydrocarbon Production and Reservoir Deformation of Oil Shale In Situ Conversion Processing Using a Downhole Burner.
    Liu Y; Xue L; Bai F; Zhao J; Yan Y
    ACS Omega; 2022 Jul; 7(27):23695-23707. PubMed ID: 35847291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model.
    Hu S; Wu H; Liang X; Xiao C; Zhao Q; Cao Y; Han X
    Chemosphere; 2022 Jan; 287(Pt 1):131987. PubMed ID: 34474385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release Mechanism of Volatile Products from Oil Shale Pressure-Controlled Pyrolysis Induced by Supercritical Carbon Dioxide.
    Zhao S; Su J; Wu J; Xiaoshu L
    ACS Omega; 2022 Dec; 7(50):47330-47340. PubMed ID: 36570204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on the Spectrum Research on the Process of Oil Shale Pyrolysis].
    Lan XZ; Luo WJ; Song YH; Zhang QL; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1121-6. PubMed ID: 30052011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic Production Characteristics of Pore Crude Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection in Shale Oil Reservoirs.
    Du M; Yang Z; Feng C; Yao L; Chen X; Li H
    ACS Omega; 2023 May; 8(20):18186-18201. PubMed ID: 37251129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Oil Recovery Method Selection for Shale Oil Based on Numerical Simulations.
    Mukhina E; Cheremisin A; Khakimova L; Garipova A; Dvoretskaya E; Zvada M; Kalacheva D; Prochukhan K; Kasyanenko A; Cheremisin A
    ACS Omega; 2021 Sep; 6(37):23731-23741. PubMed ID: 34568653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drinking water while fracking: now and in the future.
    Brantley SL
    Ground Water; 2015; 53(1):21-3. PubMed ID: 25713828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReaxFF Molecular Dynamics Study on the Microscopic Mechanism for Kerogen Pyrolysis.
    Chen Y; Wang Z; Li B; Yu K; Wang H; Wang J; Huo Y; Wang J
    Langmuir; 2023 Dec; 39(50):18581-18593. PubMed ID: 38060286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.
    Edwards RWJ; Doster F; Celia MA; Bandilla KW
    Environ Sci Technol; 2017 Dec; 51(23):13779-13787. PubMed ID: 29086564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale.
    Barth-Naftilan E; Sohng J; Saiers JE
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6970-6975. PubMed ID: 29915033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of oil shale in situ mining on groundwater environment: A water-rock interaction study.
    Hu S; Xiao C; Liang X; Cao Y; Wang X; Li M
    Chemosphere; 2019 Aug; 228():384-389. PubMed ID: 31042612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Prediction and Heating Parameter Optimization of Organic-Rich Shale In Situ Conversion Based on Numerical Simulation and Artificial Intelligence Algorithms.
    Liu Y; Yao C; Liu B; Xuan Y; Du X
    ACS Omega; 2024 Apr; 9(13):15511-15526. PubMed ID: 38585092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.