BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38405906)

  • 1. Workflow enhancement of TurboID-mediated proximity labeling for SPY signaling network mapping.
    Grismer TS; Karundasa SS; Shrestha R; Byun D; Ni W; Reyes AV; Xu SL
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TurboID-mediated proximity labeling for screening interacting proteins of FIP37 in
    Li X; Wei Y; Fei Q; Fu G; Gan Y; Shi C
    Plant Direct; 2023 Dec; 7(12):e555. PubMed ID: 38111714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximity Labeling in Plants.
    Xu SL; Shrestha R; Karunadasa SS; Xie PQ
    Annu Rev Plant Biol; 2023 May; 74():285-312. PubMed ID: 36854476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics.
    Nishino K; Yoshikawa H; Motani K; Kosako H
    J Proteome Res; 2022 Sep; 21(9):2094-2103. PubMed ID: 35979633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity Dependent Biotin Labelling in Zebrafish for Proteome and Interactome Profiling.
    Xiong Z; Lo HP; McMahon KA; Parton RG; Hall TE
    Bio Protoc; 2021 Oct; 11(19):e4178. PubMed ID: 34722825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of MPK4 kinase interactome using TurboID proximity labeling proteomics in Arabidopsis thaliana.
    Lin C; Yeo I; Dufresne CP; Zhao G; Joe S; Chen S
    Methods Enzymol; 2022; 676():369-384. PubMed ID: 36280358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TurboID-Based Proximity Labeling: A Method to Decipher Protein-Protein Interactions in Plants.
    Li Y; Zhang Y; Dinesh-Kumar SP
    Methods Mol Biol; 2024; 2724():257-272. PubMed ID: 37987912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximity labeling in mammalian cells with TurboID and split-TurboID.
    Cho KF; Branon TC; Udeshi ND; Myers SA; Carr SA; Ting AY
    Nat Protoc; 2020 Dec; 15(12):3971-3999. PubMed ID: 33139955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-Cleavable Biotin for Chemical and Enzymatic Biotinylation and Its Application to Mitochondrial TurboID Proteomics.
    Li H; Frankenfield AM; Houston R; Sekine S; Hao L
    J Am Soc Mass Spectrom; 2021 Sep; 32(9):2358-2365. PubMed ID: 33909971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TurboID-Based Proximity Labeling for In Planta Identification of Protein-Protein Interaction Networks.
    Zhang Y; Li Y; Yang X; Wen Z; Nagalakshmi U; Dinesh-Kumar SP
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of endogenously biotinylated carboxylases enhances the sensitivity of TurboID-mediated proximity labeling in Caenorhabditis elegans.
    Artan M; Hartl M; Chen W; de Bono M
    J Biol Chem; 2022 Sep; 298(9):102343. PubMed ID: 35933017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Identification of Biotinylated Proteins from Proximity Labeling (Spot-BioID).
    Lee SY; Seo JK; Rhee HW
    Methods Mol Biol; 2019; 2008():97-105. PubMed ID: 31124091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling.
    Artan M; Barratt S; Flynn SM; Begum F; Skehel M; Nicolas A; de Bono M
    J Biol Chem; 2021 Sep; 297(3):101094. PubMed ID: 34416233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems.
    Arora D; Abel NB; Liu C; Van Damme P; Yperman K; Eeckhout D; Vu LD; Wang J; Tornkvist A; Impens F; Korbei B; Van Leene J; Goossens A; De Jaeger G; Ott T; Moschou PN; Van Damme D
    Plant Cell; 2020 Nov; 32(11):3388-3407. PubMed ID: 32843435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol to identify protein-protein interaction networks in Solanum tuberosum using transient TurboID-based proximity labeling.
    Shi L; Marti Ferrando T; Landeo Villanueva S; Joosten MHAJ; Vleeshouwers VGAA; Bachem CWB
    STAR Protoc; 2023 Dec; 4(4):102577. PubMed ID: 37733594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular Proteomic Profiling Using Proximity Labeling by TurboID-NES in Microglial and Neuronal Cell Lines.
    Sunna S; Bowen C; Zeng H; Rayaprolu S; Kumar P; Bagchi P; Dammer EB; Guo Q; Duong DM; Bitarafan S; Natu A; Wood L; Seyfried NT; Rangaraju S
    Mol Cell Proteomics; 2023 Jun; 22(6):100546. PubMed ID: 37061046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of TurboID-dependent biotinylation intensity in proximity ligation screens.
    Garloff V; Krüger T; Brakhage A; Rubio I
    J Proteomics; 2023 May; 279():104886. PubMed ID: 36966971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions.
    Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T
    Elife; 2020 May; 9():. PubMed ID: 32391793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An antibody-based proximity labeling protocol to identify biotinylated interactors of SARS-CoV-2.
    Shang L; Zhang Y; Liu Y; Jin C; Zhao Y; Zhang J; Wang PH; Wang J
    STAR Protoc; 2022 Jun; 3(2):101406. PubMed ID: 35611119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING).
    Motani K; Kosako H
    J Biol Chem; 2020 Aug; 295(32):11174-11183. PubMed ID: 32554809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.