These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 38405926)
1. Differential Conservation and Loss of CR1 Retrotransposons in Squamates Reveals Lineage-Specific Genome Dynamics across Reptiles. Gable SM; Bushroe N; Mendez J; Wilson A; Pinto B; Gamble T; Tollis M bioRxiv; 2024 Feb; ():. PubMed ID: 38405926 [TBL] [Abstract][Full Text] [Related]
2. Differential Conservation and Loss of Chicken Repeat 1 (CR1) Retrotransposons in Squamates Reveal Lineage-Specific Genome Dynamics Across Reptiles. Gable SM; Bushroe NA; Mendez JM; Wilson A; Pinto BJ; Gamble T; Tollis M Genome Biol Evol; 2024 Aug; 16(8):. PubMed ID: 39031594 [TBL] [Abstract][Full Text] [Related]
3. The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order. Gable SM; Mendez JM; Bushroe NA; Wilson A; Byars MI; Tollis M Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510292 [TBL] [Abstract][Full Text] [Related]
4. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Pasquesi GIM; Adams RH; Card DC; Schield DR; Corbin AB; Perry BW; Reyes-Velasco J; Ruggiero RP; Vandewege MW; Shortt JA; Castoe TA Nat Commun; 2018 Jul; 9(1):2774. PubMed ID: 30018307 [TBL] [Abstract][Full Text] [Related]
5. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Suh A; Churakov G; Ramakodi MP; Platt RN; Jurka J; Kojima KK; Caballero J; Smit AF; Vliet KA; Hoffmann FG; Brosius J; Green RE; Braun EL; Ray DA; Schmitz J Genome Biol Evol; 2014 Dec; 7(1):205-17. PubMed ID: 25503085 [TBL] [Abstract][Full Text] [Related]
6. The Mobilome of Reptiles: Evolution, Structure, and Function. Boissinot S; Bourgeois Y; Manthey JD; Ruggiero RP Cytogenet Genome Res; 2019; 157(1-2):21-33. PubMed ID: 30739120 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Chalopin D; Naville M; Plard F; Galiana D; Volff JN Genome Biol Evol; 2015 Jan; 7(2):567-80. PubMed ID: 25577199 [TBL] [Abstract][Full Text] [Related]
8. Genome Stability Is in the Eye of the Beholder: CR1 Retrotransposon Activity Varies Significantly across Avian Diversity. Galbraith JD; Kortschak RD; Suh A; Adelson DL Genome Biol Evol; 2021 Dec; 13(12):. PubMed ID: 34894225 [TBL] [Abstract][Full Text] [Related]
9. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. Deakin JE; Edwards MJ; Patel H; O'Meally D; Lian J; Stenhouse R; Ryan S; Livernois AM; Azad B; Holleley CE; Li Q; Georges A BMC Genomics; 2016 Jun; 17():447. PubMed ID: 27286959 [TBL] [Abstract][Full Text] [Related]
10. Low diversity, activity, and density of transposable elements in five avian genomes. Gao B; Wang S; Wang Y; Shen D; Xue S; Chen C; Cui H; Song C Funct Integr Genomics; 2017 Jul; 17(4):427-439. PubMed ID: 28190211 [TBL] [Abstract][Full Text] [Related]
11. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Adams RH; Blackmon H; Reyes-Velasco J; Schield DR; Card DC; Andrew AL; Waynewood N; Castoe TA Genome; 2016 May; 59(5):295-310. PubMed ID: 27064176 [TBL] [Abstract][Full Text] [Related]
12. Determinate growth is predominant and likely ancestral in squamate reptiles. Frýdlová P; Mrzílková J; Šeremeta M; Křemen J; Dudák J; Žemlička J; Minnich B; Kverková K; Němec P; Zach P; Frynta D Proc Biol Sci; 2020 Dec; 287(1941):20202737. PubMed ID: 33352069 [TBL] [Abstract][Full Text] [Related]
13. Multiple and diversified transposon lineages contribute to early and recent bivalve genome evolution. Martelossi J; Nicolini F; Subacchi S; Pasquale D; Ghiselli F; Luchetti A BMC Biol; 2023 Jun; 21(1):145. PubMed ID: 37365567 [TBL] [Abstract][Full Text] [Related]
14. The contribution of transposable elements to size variations between four teleost genomes. Gao B; Shen D; Xue S; Chen C; Cui H; Song C Mob DNA; 2016; 7():4. PubMed ID: 26862351 [TBL] [Abstract][Full Text] [Related]
15. Species-specific chromatin landscape determines how transposable elements shape genome evolution. Huang Y; Shukla H; Lee YCG Elife; 2022 Aug; 11():. PubMed ID: 35997258 [TBL] [Abstract][Full Text] [Related]
16. Phylogenomic investigation of CR1 LINE diversity in reptiles. Shedlock AM Syst Biol; 2006 Dec; 55(6):902-11. PubMed ID: 17345672 [TBL] [Abstract][Full Text] [Related]
17. Rampant horizontal transfer of SPIN transposons in squamate reptiles. Gilbert C; Hernandez SS; Flores-Benabib J; Smith EN; Feschotte C Mol Biol Evol; 2012 Feb; 29(2):503-15. PubMed ID: 21771716 [TBL] [Abstract][Full Text] [Related]
18. Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Card DC; Jennings WB; Edwards SV Animals (Basel); 2023 Jan; 13(3):. PubMed ID: 36766360 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary lability in Feiner N Evol Lett; 2019 Oct; 3(5):474-484. PubMed ID: 31636940 [No Abstract] [Full Text] [Related]
20. Diversity and evolution of transposable elements in the plant-parasitic nematodes. Dayi M BMC Genomics; 2024 May; 25(1):511. PubMed ID: 38783171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]