BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 38406599)

  • 1. Accumulation of Iron Oxide-Based Contrast Agents in Rabbit Atherosclerotic Plaques in Relation to Plaque Age and Vulnerability Features.
    Sekita A; Unterweger H; Berg S; Ohlmeyer S; Bäuerle T; Zheng KH; Coolen BF; Nederveen AJ; Cabella C; Rossi S; Stroes ESG; Alexiou C; Lyer S; Cicha I
    Int J Nanomedicine; 2024; 19():1645-1666. PubMed ID: 38406599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.
    Evans RJ; Lavin B; Phinikaridou A; Chooi KY; Mohri Z; Wong E; Boyle JJ; Krams R; Botnar R; Long NJ
    Nanotheranostics; 2020; 4(4):184-194. PubMed ID: 32637296
    [No Abstract]   [Full Text] [Related]  

  • 3. Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization.
    Wagner S; Schnorr J; Ludwig A; Stangl V; Ebert M; Hamm B; Taupitz M
    Int J Nanomedicine; 2013; 8():767-79. PubMed ID: 23450179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdistribution of Magnetic Resonance Imaging Contrast Agents in Atherosclerotic Plaques Determined by LA-ICP-MS and SR-μXRF Imaging.
    Uca YO; Hallmann D; Hesse B; Seim C; Stolzenburg N; Pietsch H; Schnorr J; Taupitz M
    Mol Imaging Biol; 2021 Jun; 23(3):382-393. PubMed ID: 33289060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-energy CT imaging of atherosclerotic plaque using novel ultrasmall superparamagnetic iron oxide in hyperlipidemic rabbits.
    Sato H; Fujimoto S; Kawaguchi YO; Nozaki YO; Tomizawa N; Kogure Y; Minamino T
    Acta Radiol; 2023 Apr; 64(4):1718-1724. PubMed ID: 36226361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining.
    Scharlach C; Kratz H; Wiekhorst F; Warmuth C; Schnorr J; Genter G; Ebert M; Mueller S; Schellenberger E
    Nanomedicine; 2015 Jul; 11(5):1085-95. PubMed ID: 25659644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI).
    Smith BR; Heverhagen J; Knopp M; Schmalbrock P; Shapiro J; Shiomi M; Moldovan NI; Ferrari M; Lee SC
    Biomed Microdevices; 2007 Oct; 9(5):719-27. PubMed ID: 17562181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles.
    Matuszak J; Lutz B; Sekita A; Zaloga J; Alexiou C; Lyer S; Cicha I
    Int J Nanomedicine; 2018; 13():8443-8460. PubMed ID: 30587970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the effects of dexamethasone treatment by MRI using in vivo iron oxide nanoparticle-labeled macrophages.
    Gramoun A; Crowe LA; Maurizi L; Wirth W; Tobalem F; Grosdemange K; Coullerez G; Eckstein F; Koenders MI; Van den Berg WB; Hofmann H; Vallée JP
    Arthritis Res Ther; 2014 Jun; 16(3):R131. PubMed ID: 24957862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of ultrasmall superparamagnetic iron-oxide (USPIO) enhanced MRI with ferumoxytol to quantify arterial wall inflammation.
    Smits LP; Tiessens F; Zheng KH; Stroes ES; Nederveen AJ; Coolen BF
    Atherosclerosis; 2017 Aug; 263():211-218. PubMed ID: 28662398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe.
    Wei Q; Wang J; Shi W; Zhang B; Jiang H; Du M; Mei H; Hu Y
    Acta Biomater; 2019 May; 90():324-336. PubMed ID: 30954623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging contrast-enhancement with superparamagnetic iron oxide nanoparticles amplifies macrophage foam cell apoptosis in human and murine atherosclerosis.
    Segers FME; Ruder AV; Westra MM; Lammers T; Dadfar SM; Roemhild K; Lam TS; Kooi ME; Cleutjens KBJM; Verheyen FK; Schurink GWH; Haenen GR; van Berkel TJC; Bot I; Halvorsen B; Sluimer JC; Biessen EAL
    Cardiovasc Res; 2023 Jan; 118(17):3346-3359. PubMed ID: 35325057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Vulnerable Atherosclerotic Plaques in Experimental Atherosclerosis with the USPIO-Enhanced MRI.
    Qi CM; Du L; Wu WH; Li DY; Hao J; Gong L; Deng L; Zhang T; Zhang C; Zhang Y
    Cell Biochem Biophys; 2015 Nov; 73(2):331-337. PubMed ID: 27352319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI.
    Chan JM; Monaco C; Wylezinska-Arridge M; Tremoleda JL; Gibbs RG
    Eur J Vasc Endovasc Surg; 2014 May; 47(5):462-9. PubMed ID: 24594295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T1-weighted MRI of targeting atherosclerotic plaque based on CD40 expression on engulfed USPIO's cell surface.
    Huang C; Huang W; Meng Y; Zhou C; Wang X; Zhang C; Tian Y; Wei W; Li Y; Zhou Q; Chen W; Tang Y
    Biomed Mater; 2024 Jan; 19(2):. PubMed ID: 38215489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques.
    Wu Q; Pan W; Wu G; Wu F; Guo Y; Zhang X
    Atherosclerosis; 2023 Mar; 369():17-26. PubMed ID: 36863196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin inhibits macrophage infiltration and promotes plaque stabilization by upregulating anti-inflammatory HGF/c-Met system in the atherosclerotic rabbit: USPIO-enhanced MRI assessment.
    Hu ZP; Fang XL; Sheng B; Guo Y; Yu YQ
    Vascul Pharmacol; 2020 Apr; 127():106659. PubMed ID: 32068091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin MAC-1 (CD11b/CD18) does not result in improved atherosclerotic plaque detection by in vivo MRI.
    von zur Muhlen C; Fink-Petri A; Salaklang J; Paul D; Neudorfer I; Berti V; Merkle A; Peter K; Bode C; von Elverfeldt D
    Contrast Media Mol Imaging; 2010; 5(5):268-75. PubMed ID: 20973112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Vulnerable Atherosclerotic Plaque in Rabbits Using DMSA-USPIO Enhanced Magnetic Resonance Imaging to Investigate the Effect of Atorvastatin.
    Qi C; Deng L; Li D; Wu W; Gong L; Li Y; Zhang Q; Zhang T; Zhang C; Zhang Y
    PLoS One; 2015; 10(5):e0125677. PubMed ID: 25973795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.