BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3840667)

  • 21. Biosynthesis of fosfomycin by Streptomyces fradiae.
    Rogers TO; Birnbaum J
    Antimicrob Agents Chemother; 1974 Feb; 5(2):121-32. PubMed ID: 4840428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Isolation and properties of macrotetrolide synthase from the mycelium of Actinomycetes].
    Nefelova MV; Karelina IIu; Sverdlova AN; Egorov NS
    Biokhimiia; 1989 Nov; 54(11):1873-80. PubMed ID: 2627555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Biosynthesis of nactinic compounds by population variants of macrotetrolide-producing streptomycetes].
    Sverdlova AN; Zaretskaia MSh; Solov'eva LN; Vinogradova KA; Konoshenko GI
    Antibiot Khimioter; 1996 Jun; 41(6):3-9. PubMed ID: 9054326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of the biosynthesis of leucomycin, a macrolide antibiotic, by cerulenin.
    Takeshima H; Kitao C; Omura S
    J Biochem; 1977 Apr; 81(4):1127-32. PubMed ID: 881413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutamate as the common precursor for the aglycon of the naturally occurring C-nucleoside antibiotics.
    Suhadolnik RJ; Reichenbach NL
    Biochemistry; 1981 Nov; 20(24):7042-6. PubMed ID: 6119109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Level of sodium and potassium in Streptomyces chrysomallus subsp. macrotetrolidi cells--producers of macrotetralide antibiotics].
    Sverdlova AN; Agbenoko K; Mazenko IV; Iaglova LG; Egorov NS
    Mol Gen Mikrobiol Virusol; 1994; (6):17-22. PubMed ID: 7739591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Physiology and biochemistry of streptomycetes. III. Incorporation of D-glucose-u-14C in paramomycin as indicator of antibiotic biosynthesis by Streptomyces albus var. metamycinus nov. var].
    Köster H; Liebermann B; Reuter G
    Z Allg Mikrobiol; 1975; 15(6):437-45. PubMed ID: 1199135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Biosynthesis of 14C- and 35S-lincomycin using different sources for the label].
    Griaznova NS; Petiushenko RM
    Antibiotiki; 1976 Nov; 21(11):963-8. PubMed ID: 1020932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Biosynthesis of the labelled rifamycin B in the presence of different 14C- and 3H-precursors].
    Subbotina NA; Beliavskaia IV; Griaznova NS; Teteriatnik AF; Sazykin IuO
    Antibiotiki; 1978 Jan; 23(1):31-4. PubMed ID: 623446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active entner-doudoroff pathway.
    Borodina I; Schöller C; Eliasson A; Nielsen J
    Appl Environ Microbiol; 2005 May; 71(5):2294-302. PubMed ID: 15870314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Metabolic products of microorganisms. 97. Biosynthesis of macrotetrolides. I. Precursors of the carbon skeleton of nonactin].
    Pape H
    Arch Mikrobiol; 1972; 82(3):254-64. PubMed ID: 4623871
    [No Abstract]   [Full Text] [Related]  

  • 34. [Participation of acetate in the biosynthesis of carotenoids and macrotetralids by Actinomyces chrysomallus var. carotenoides].
    Sverdlova AN; Silaev AB; Alekseeva LN; Nefelova MV
    Mikrobiologiia; 1977; 46(6):1122-3. PubMed ID: 600112
    [No Abstract]   [Full Text] [Related]  

  • 35. [Activity of carbohydrate metabolism enzymes in Streptomyces imbricatus, producing imbricin in controlled antibiotic biosynthesis].
    Topkova OV; Iakovleva EP; Kolodiaznaia VA
    Antibiot Khimioter; 2010; 55(3-4):3-7. PubMed ID: 20695200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Physiology and biochemistry of streptomycetes. XIII. Biosynthesis of paromomycin by Streptomyces albus var. metamycinus nov. var. supplied with 14C-glucose, 14C-glucosamine, 14C-2-desoxystreptamine and 14C-ribose].
    Reuter G; Köster H; Liebermann B
    Z Allg Mikrobiol; 1977; 17(7):543-7. PubMed ID: 602264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Production of carbon-labelled rubomycin by means of biosynthesis].
    Paranosenkova VI; Karpov VL
    Antibiotiki; 1977 Aug; 22(8):708-12. PubMed ID: 907323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Biological action and complex-forming properties of a macrotetrolide antibiotic complex].
    Nefelova MV; Sverdlova AN
    Antibiot Med Biotekhnol; 1985 Apr; 30(4):261-4. PubMed ID: 3927832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis of fatty acids and sterols in relation to the antibiotic formation in Oudemansiella mucida.
    Nerud F; Musílek V
    Folia Microbiol (Praha); 1978; 23(5):385-8. PubMed ID: 568102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of glycolysis, TCA cycle & some amino acids in the biosynthesis of antibiotic AS-40.
    Shoukry S; Zaki Z; Khater H
    Indian J Exp Biol; 1981 Dec; 19(12):1146-9. PubMed ID: 7333648
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.