These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 38406992)
1. Insights into a functional model of key deubiquitinases UBP12/13 in plants. Zhang S; Hu N; Yu F New Phytol; 2024 Apr; 242(2):424-430. PubMed ID: 38406992 [TBL] [Abstract][Full Text] [Related]
2. Deubiquitinating enzymes UBP12 and UBP13 regulate carbon/nitrogen-nutrient stress responses by interacting with the membrane-localized ubiquitin ligase ATL31 in Arabidopsis. Luo Y; Yasuda S; Takagi J; Hasegawa Y; Chiba Y; Yamaguchi J; Sato T Biochem Biophys Res Commun; 2022 Dec; 636(Pt 2):55-61. PubMed ID: 36347172 [TBL] [Abstract][Full Text] [Related]
3. The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling. Liu G; Liang J; Lou L; Tian M; Zhang X; Liu L; Zhao Q; Xia R; Wu Y; Xie Q; Yu F Sci Adv; 2022 Apr; 8(14):eabl5765. PubMed ID: 35385312 [TBL] [Abstract][Full Text] [Related]
4. Decoding plant adaptation: deubiquitinating enzymes UBP12 and UBP13 in hormone signaling, light response, and developmental processes. Feng H; Tan J; Deng Z J Exp Bot; 2024 Feb; 75(3):721-732. PubMed ID: 37904584 [TBL] [Abstract][Full Text] [Related]
5. The deubiquitinating enzymes UBP12 and UBP13 positively regulate recovery after carbon starvation by modulating BES1 stability in Arabidopsis thaliana. Xiong J; Yang F; Yao X; Zhao Y; Wen Y; Lin H; Guo H; Yin Y; Zhang D Plant Cell; 2022 Oct; 34(11):4516-4530. PubMed ID: 35944221 [TBL] [Abstract][Full Text] [Related]
6. Role of E3 ubiquitin ligases and deubiquitinating enzymes in SARS-CoV-2 infection. Zhao M; Zhang M; Yang Z; Zhou Z; Huang J; Zhao B Front Cell Infect Microbiol; 2023; 13():1217383. PubMed ID: 37360529 [TBL] [Abstract][Full Text] [Related]
7. Deubiquitinating enzymes UBP12 and UBP13 stabilize the brassinosteroid receptor BRI1. Luo Y; Takagi J; Claus LAN; Zhang C; Yasuda S; Hasegawa Y; Yamaguchi J; Shan L; Russinova E; Sato T EMBO Rep; 2022 Apr; 23(4):e53354. PubMed ID: 35166439 [TBL] [Abstract][Full Text] [Related]
8. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Liu F; Chen J; Li K; Li H; Zhu Y; Zhai Y; Lu B; Fan Y; Liu Z; Chen X; Jia X; Dong Z; Liu K Mol Cancer; 2024 Jul; 23(1):148. PubMed ID: 39048965 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. An Z; Liu Y; Ou Y; Li J; Zhang B; Sun D; Sun Y; Tang W Proc Natl Acad Sci U S A; 2018 Jan; 115(5):1123-1128. PubMed ID: 29339500 [TBL] [Abstract][Full Text] [Related]
11. Hidden targets of ubiquitin proteasome system: To prevent diabetic nephropathy. Goru SK; Kadakol A; Gaikwad AB Pharmacol Res; 2017 Jun; 120():170-179. PubMed ID: 28363724 [TBL] [Abstract][Full Text] [Related]
12. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Cui X; Lu F; Li Y; Xue Y; Kang Y; Zhang S; Qiu Q; Cui X; Zheng S; Liu B; Xu X; Cao X Plant Physiol; 2013 Jun; 162(2):897-906. PubMed ID: 23645632 [TBL] [Abstract][Full Text] [Related]
13. UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2. Vanhaeren H; Chen Y; Vermeersch M; De Milde L; De Vleeschhauwer V; Natran A; Persiau G; Eeckhout D; De Jaeger G; Gevaert K; Inzé D Elife; 2020 Mar; 9():. PubMed ID: 32209225 [TBL] [Abstract][Full Text] [Related]
14. The emerging role of Deubiquitinases (DUBs) in parasites: A foresight review. Kumar P; Kumar P; Mandal D; Velayutham R Front Cell Infect Microbiol; 2022; 12():985178. PubMed ID: 36237424 [TBL] [Abstract][Full Text] [Related]
15. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. Kumar S; Basu M; Ghosh MK Biochim Biophys Acta Mol Cell Res; 2024 Dec; 1871(8):119827. PubMed ID: 39187067 [TBL] [Abstract][Full Text] [Related]
16. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system. Poirson J; Biquand E; Straub ML; Cassonnet P; Nominé Y; Jones L; van der Werf S; Travé G; Zanier K; Jacob Y; Demeret C; Masson M FEBS J; 2017 Oct; 284(19):3171-3201. PubMed ID: 28786561 [TBL] [Abstract][Full Text] [Related]
17. Role of the ubiquitin proteasome system in hematologic malignancies. Sahasrabuddhe AA; Elenitoba-Johnson KS Immunol Rev; 2015 Jan; 263(1):224-39. PubMed ID: 25510280 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of Ubiquitination in Differentiation and Dedifferentiation of Pancreatic β-cells: Putative Target for Diabetes. Francis M; Bhaskar S; Vishnuvajhala S; Prasanna J; Kumar A Curr Protein Pept Sci; 2022; 23(9):602-618. PubMed ID: 35466872 [TBL] [Abstract][Full Text] [Related]
19. The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. Xu J; Liu H; Zhou C; Wang J; Wang J; Han Y; Zheng N; Zhang M; Li X Plant Sci; 2024 May; 342():112035. PubMed ID: 38367822 [TBL] [Abstract][Full Text] [Related]
20. UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth. Lindbäck LN; Hu Y; Ackermann A; Artz O; Pedmale UV Curr Biol; 2022 Aug; 32(15):3221-3231.e6. PubMed ID: 35700731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]