These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38407041)

  • 1. Sequence Sensitivity in Membrane Remodeling by Polyampholyte Condensates.
    Mondal S; Cui Q
    J Phys Chem B; 2024 Mar; 128(9):2087-2099. PubMed ID: 38407041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coacervation of poly-electrolytes in the presence of lipid bilayers: mutual alteration of structure and morphology.
    Mondal S; Cui Q
    Chem Sci; 2022 Jul; 13(26):7933-7946. PubMed ID: 35865903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of charge asymmetry on the liquid-liquid phase separation of polyampholytes and their condensate properties.
    An Y; Gao T; Wang T; Zhang D; Bharti B
    Soft Matter; 2024 Aug; 20(31):6150-6159. PubMed ID: 39044475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembling Polypeptides in Complex Coacervation.
    Sathyavageeswaran A; Bonesso Sabadini J; Perry SL
    Acc Chem Res; 2024 Feb; 57(3):386-398. PubMed ID: 38252962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of polyampholyte-polyelectrolyte complexes: effect of charge sequence and strength of electrostatic interactions.
    Jeon J; Dobrynin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061803. PubMed ID: 16241250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge pattern affects the structure and dynamics of polyampholyte condensates.
    Hazra MK; Levy Y
    Phys Chem Chem Phys; 2020 Sep; 22(34):19368-19375. PubMed ID: 32822449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coacervation-Induced Remodeling of Nanovesicles.
    Mondal S; Cui Q
    J Phys Chem Lett; 2023 May; 14(19):4532-4540. PubMed ID: 37159305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation.
    Wu S; Wen J; Perrett S
    Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters.
    Das S; Amin AN; Lin YH; Chan HS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28558-28574. PubMed ID: 30397688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates.
    Wessén J; Pal T; Das S; Lin YH; Chan HS
    J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-Dependent Conformational Transitions of Disordered Proteins During Condensation.
    Wang J; Devarajan DS; Kim YC; Nikoubashman A; Mittal J
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane curvature sensing by model biomolecular condensates.
    Anila MM; Ghosh R; Różycki B
    Soft Matter; 2023 May; 19(20):3723-3732. PubMed ID: 37190858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates.
    Fonin AV; Antifeeva IA; Kuznetsova IM; Turoverov KK; Zaslavsky BY; Kulkarni P; Uversky VN
    Essays Biochem; 2022 Dec; 66(7):831-847. PubMed ID: 36350034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions.
    Wessén J; Das S; Pal T; Chan HS
    J Phys Chem B; 2022 Nov; 126(45):9222-9245. PubMed ID: 36343363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partially Globular Conformations from Random Charge Sequences.
    Chae MK; Lee NK; Jung Y; Johner A; Joanny JF
    ACS Macro Lett; 2022 Mar; 11(3):382-386. PubMed ID: 35575372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins.
    Bianchi G; Longhi S; Grandori R; Brocca S
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes.
    Lin YH; Brady JP; Chan HS; Ghosh K
    J Chem Phys; 2020 Jan; 152(4):045102. PubMed ID: 32007034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation.
    Das S; Eisen A; Lin YH; Chan HS
    J Phys Chem B; 2018 May; 122(21):5418-5431. PubMed ID: 29397728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.