These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38407991)

  • 1. CAM3.0: determining cell type composition and expression from bulk tissues with fully unsupervised deconvolution.
    Wu CT; Du D; Chen L; Dai R; Liu C; Yu G; Bhardwaj S; Parker SJ; Zhang Z; Clarke R; Herrington DM; Wang Y
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38407991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. swCAM: estimation of subtype-specific expressions in individual samples with unsupervised sample-wise deconvolution.
    Chen L; Wu CT; Lin CH; Dai R; Liu C; Clarke R; Yu G; Van Eyk JE; Herrington DM; Wang Y
    Bioinformatics; 2022 Feb; 38(5):1403-1410. PubMed ID: 34904628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples.
    Wang N; Gong T; Clarke R; Chen L; Shih IeM; Zhang Z; Levine DA; Xuan J; Wang Y
    Bioinformatics; 2015 Jan; 31(1):137-9. PubMed ID: 25212756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
    Tiong KL; Luzhbin D; Yeang CH
    BMC Bioinformatics; 2024 Jun; 25(1):209. PubMed ID: 38867193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.
    Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L
    PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DDN3.0: determining significant rewiring of biological network structure with differential dependency networks.
    Fu Y; Lu Y; Wang Y; Zhang B; Zhang Z; Yu G; Liu C; Clarke R; Herrington DM; Wang Y
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38902940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. debCAM: a bioconductor R package for fully unsupervised deconvolution of complex tissues.
    Chen L; Wu CT; Wang N; Herrington DM; Clarke R; Wang Y
    Bioinformatics; 2020 Jun; 36(12):3927-3929. PubMed ID: 32219387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deblender: a semi-/unsupervised multi-operational computational method for complete deconvolution of expression data from heterogeneous samples.
    Dimitrakopoulou K; Wik E; Akslen LA; Jonassen I
    BMC Bioinformatics; 2018 Nov; 19(1):408. PubMed ID: 30404611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues.
    Wang N; Chen L; Wang Y
    Methods Mol Biol; 2018; 1751():223-236. PubMed ID: 29508301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information.
    Dong L; Kollipara A; Darville T; Zou F; Zheng X
    Sci Rep; 2020 Mar; 10(1):5434. PubMed ID: 32214192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GLDADec: marker-gene guided LDA modeling for bulk gene expression deconvolution.
    Azuma I; Mizuno T; Kusuhara H
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38982642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved cell composition deconvolution method of bulk gene expression profiles to quantify subsets of immune cells.
    Chiu YJ; Hsieh YH; Huang YH
    BMC Med Genomics; 2019 Dec; 12(Suppl 8):169. PubMed ID: 31856824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NITUMID: Nonnegative matrix factorization-based Immune-TUmor MIcroenvironment Deconvolution.
    Tang D; Park S; Zhao H
    Bioinformatics; 2020 Mar; 36(5):1344-1350. PubMed ID: 31593244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rarity: discovering rare cell populations from single-cell imaging data.
    Märtens K; Bortolomeazzi M; Montorsi L; Spencer J; Ciccarelli F; Yau C
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38092048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.
    Chen C; Leung YY; Ionita M; Wang LS; Li M
    Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-Cluster Identification through Semi-Supervised Optimization of Rare-Cell Silhouettes (SCISSORS) in single-cell RNA-sequencing.
    Leary JR; Xu Y; Morrison AB; Jin C; Shen EC; Kuhlers PC; Su Y; Rashid NU; Yeh JJ; Peng XL
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer.
    Lei H; Guo XA; Tao Y; Ding K; Fu X; Oesterreich S; Lee AV; Schwartz R
    Bioinformatics; 2022 Jun; 38(Suppl 1):i386-i394. PubMed ID: 35758822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq.
    Sun X; Lin X; Li Z; Wu H
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35021202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues.
    Li Y; Xie X
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 23735186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.