These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38407991)

  • 21. InstaPrism: an R package for fast implementation of BayesPrism.
    Hu M; Chikina M
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38970377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue-specific deconvolution of immune cell composition by integrating bulk and single-cell transcriptomes.
    Chen Z; Ji C; Shen Q; Liu W; Qin FX; Wu A
    Bioinformatics; 2020 Feb; 36(3):819-827. PubMed ID: 31504185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
    Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deconvolving the contributions of cell-type heterogeneity on cortical gene expression.
    Patrick E; Taga M; Ergun A; Ng B; Casazza W; Cimpean M; Yung C; Schneider JA; Bennett DA; Gaiteri C; De Jager PL; Bradshaw EM; Mostafavi S
    PLoS Comput Biol; 2020 Aug; 16(8):e1008120. PubMed ID: 32804935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data.
    Gong T; Szustakowski JD
    Bioinformatics; 2013 Apr; 29(8):1083-5. PubMed ID: 23428642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational de novo discovery of distinguishing genes for biological processes and cell types in complex tissues.
    Newberg LA; Chen X; Kodira CD; Zavodszky MI
    PLoS One; 2018; 13(3):e0193067. PubMed ID: 29494600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deconvolution of heterogeneous tumor samples using partial reference signals.
    Qin Y; Zhang W; Sun X; Nan S; Wei N; Wu HJ; Zheng X
    PLoS Comput Biol; 2020 Nov; 16(11):e1008452. PubMed ID: 33253170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures.
    Zaitsev K; Bambouskova M; Swain A; Artyomov MN
    Nat Commun; 2019 May; 10(1):2209. PubMed ID: 31101809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Analysis of Cell Mixtures Deconvolution and Gene Signatures Generated for Blood, Immune and Cancer Cells.
    Alonso-Moreda N; Berral-González A; De La Rosa E; González-Velasco O; Sánchez-Santos JM; De Las Rivas J
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. COT: an efficient and accurate method for detecting marker genes among many subtypes.
    Lu Y; Wu CT; Parker SJ; Cheng Z; Saylor G; Van Eyk JE; Yu G; Clarke R; Herrington DM; Wang Y
    Bioinform Adv; 2022; 2(1):vbac037. PubMed ID: 35673616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.
    Gaujoux R; Seoighe C
    Infect Genet Evol; 2012 Jul; 12(5):913-21. PubMed ID: 21930246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational deconvolution of transcriptomics data from mixed cell populations.
    Avila Cobos F; Vandesompele J; Mestdagh P; De Preter K
    Bioinformatics; 2018 Jun; 34(11):1969-1979. PubMed ID: 29351586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DECOMICS, a shiny application for unsupervised cell type deconvolution and biological interpretation of bulk omic data.
    Karkar S; Sharma A; Herrmann C; Blum Y; Richard M
    Bioinform Adv; 2024; 4(1):vbae136. PubMed ID: 39411450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD).
    Chiu YJ; Ni CE; Huang YH
    BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.
    Sturm G; Finotello F; Petitprez F; Zhang JD; Baumbach J; Fridman WH; List M; Aneichyk T
    Bioinformatics; 2019 Jul; 35(14):i436-i445. PubMed ID: 31510660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.
    Liao J; Qian J; Fang Y; Chen Z; Zhuang X; Zhang N; Shao X; Hu Y; Yang P; Cheng J; Hu Y; Yu L; Yang H; Zhang J; Lu X; Shao L; Wu D; Gao Y; Chen H; Fan X
    Nat Commun; 2022 Oct; 13(1):6498. PubMed ID: 36310179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NNICE: a deep quantile neural network algorithm for expression deconvolution.
    Jin YW; Hu P; Liu Q
    Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.