These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38408033)

  • 21. In Silico Evaluation of Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors.
    Ibrahim MAA; Abdelrahman AHM; Allemailem KS; Almatroudi A; Moustafa MF; Hegazy MF
    Protein J; 2021 Jun; 40(3):296-309. PubMed ID: 33387249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition.
    Macip G; Garcia-Segura P; Mestres-Truyol J; Saldivar-Espinoza B; Ojeda-Montes MJ; Gimeno A; Cereto-Massagué A; Garcia-Vallvé S; Pujadas G
    Med Res Rev; 2022 Mar; 42(2):744-769. PubMed ID: 34697818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.
    C S; S DK; Ragunathan V; Tiwari P; A S; P BD
    J Biomol Struct Dyn; 2022 Feb; 40(2):585-611. PubMed ID: 32897178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring.
    Zhu K; Borrelli KW; Greenwood JR; Day T; Abel R; Farid RS; Harder E
    J Chem Inf Model; 2014 Jul; 54(7):1932-40. PubMed ID: 24916536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a novel inhibitor of SARS-CoV-2 3CL-PRO through virtual screening and molecular dynamics simulation.
    Bepari AK; Reza HM
    PeerJ; 2021; 9():e11261. PubMed ID: 33954055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
    Santos KB; Guedes IA; Karl ALM; Dardenne LE
    J Chem Inf Model; 2020 Feb; 60(2):667-683. PubMed ID: 31922754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How Good Are Current Docking Programs at Nucleic Acid-Ligand Docking? A Comprehensive Evaluation.
    Jiang D; Zhao H; Du H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wu J; Hsieh CY; Hou T
    J Chem Theory Comput; 2023 Aug; 19(16):5633-5647. PubMed ID: 37480347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HCovDock: an efficient docking method for modeling covalent protein-ligand interactions.
    Wu Q; Huang SY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36573474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-based virtual screening approach for discovery of covalently bound ligands.
    Toledo Warshaviak D; Golan G; Borrelli KW; Zhu K; Kalid O
    J Chem Inf Model; 2014 Jul; 54(7):1941-50. PubMed ID: 24932913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Effective Therapeutic Molecule from Natural Sources against Coronavirus Protease.
    Fadaka AO; Sibuyi NRS; Martin DR; Klein A; Madiehe A; Meyer M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Step Covalent Docking with Attracting Cavities.
    Goullieux M; Zoete V; Röhrig UF
    J Chem Inf Model; 2023 Dec; 63(24):7847-7859. PubMed ID: 38049143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (M
    Hossain A; Rahman ME; Rahman MS; Nasirujjaman K; Matin MN; Faruqe MO; Rabbee MF
    Comput Biol Med; 2023 May; 157():106785. PubMed ID: 36931201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LEADS-FRAG: A Benchmark Data Set for Assessment of Fragment Docking Performance.
    Chachulski L; Windshügel B
    J Chem Inf Model; 2020 Dec; 60(12):6544-6554. PubMed ID: 33289563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an
    Majumder R; Mandal M
    J Biomol Struct Dyn; 2022 Feb; 40(2):696-711. PubMed ID: 32897138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease.
    Forrestall KL; Burley DE; Cash MK; Pottie IR; Darvesh S
    Chem Biol Interact; 2021 Feb; 335():109348. PubMed ID: 33278462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2.
    Yadav R; Imran M; Dhamija P; Chaurasia DK; Handu S
    J Biomol Struct Dyn; 2021 Oct; 39(17):6617-6632. PubMed ID: 32715956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-Ligand Docking Simulations with AutoDock4 Focused on the Main Protease of SARS-CoV-2.
    de Azevedo Junior WF; Bitencourt-Ferreira G; Godoy JR; Adriano HMA; Dos Santos Bezerra WA; Dos Santos Soares AM
    Curr Med Chem; 2021; 28(37):7614-7633. PubMed ID: 33781188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational insights into tetracyclines as inhibitors against SARS-CoV-2 M
    Bharadwaj S; Lee KE; Dwivedi VD; Kang SG
    Life Sci; 2020 Sep; 257():118080. PubMed ID: 32653520
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Maurya AK; Mishra N
    J Biomol Struct Dyn; 2021 Nov; 39(18):7306-7321. PubMed ID: 32835632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of SARS-CoV Covalent Non-Covalent Inhibitors to the SARS-CoV-2 Papain-Like Protease and Ovarian Tumor Domain Deubiquitinases.
    Sivakumar D; Stein M
    Biomolecules; 2021 May; 11(6):. PubMed ID: 34071582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.