These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38408317)

  • 1. Twisted DNA Origami-Based Chiral Monolayers for Spin Filtering.
    Wang H; Yin F; Li L; Li M; Fang Z; Sun C; Li B; Shi J; Li J; Wang L; Song S; Zuo X; Liu X; Fan C
    J Am Chem Soc; 2024 Mar; 146(9):5883-5893. PubMed ID: 38408317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-selective electron transmission through self-assembled monolayers of double-stranded peptide nucleic acid.
    Möllers PV; Ulku S; Jayarathna D; Tassinari F; Nürenberg D; Naaman R; Achim C; Zacharias H
    Chirality; 2021 Feb; 33(2):93-102. PubMed ID: 33400337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
    Bush J; Singh S; Vargas M; Oktay E; Hu CH; Veneziano R
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami.
    Rahbani JF; Hsu JCC; Chidchob P; Sleiman HF
    Nanoscale; 2018 Aug; 10(29):13994-13999. PubMed ID: 29995052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spacer-Programmed Two-Dimensional DNA Origami Assembly.
    Liu Y; Dai Z; Xie X; Li B; Jia S; Li Q; Li M; Fan C; Liu X
    J Am Chem Soc; 2024 Feb; 146(8):5461-5469. PubMed ID: 38355136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective enzymatic labeling to detect packing-induced denaturation of double-stranded DNA at interfaces.
    Peled D; Daube SS; Naaman R
    Langmuir; 2008 Oct; 24(20):11842-6. PubMed ID: 18800816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Order in the Mechanism of Charge Transport across Single-Stranded and Double-Stranded DNA Monolayers in Tunnel Junctions.
    Gupta NK; Wilkinson EA; Karuppannan SK; Bailey L; Vilan A; Zhang Z; Qi DC; Tadich A; Tuite EM; Pike AR; Tucker JHR; Nijhuis CA
    J Am Chem Soc; 2021 Dec; 143(48):20309-20319. PubMed ID: 34826219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organizing DNA origami tiles into larger structures using preformed scaffold frames.
    Zhao Z; Liu Y; Yan H
    Nano Lett; 2011 Jul; 11(7):2997-3002. PubMed ID: 21682348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation of ring single-stranded DNA measured by DNA origami structures.
    Roth Weizman E; Glick Azaria A; Garini Y
    Biophys J; 2022 Jun; 121(11):2127-2134. PubMed ID: 35490298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing and Harnessing the Mechanical Properties of Short Single-Stranded DNA in Structured Assemblies.
    Lee JY; Kim M; Lee C; Kim DN
    ACS Nano; 2021 Dec; 15(12):20430-20441. PubMed ID: 34870958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
    Roth E; Glick Azaria A; Girshevitz O; Bitler A; Garini Y
    Nano Lett; 2018 Nov; 18(11):6703-6709. PubMed ID: 30352164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding Double-Stranded DNA into Designed Shapes with Triplex-Forming Oligonucleotides.
    Ng C; Samanta A; Mandrup OA; Tsang E; Youssef S; Klausen LH; Dong M; Nijenhuis MAD; Gothelf KV
    Adv Mater; 2023 Oct; 35(40):e2302497. PubMed ID: 37311656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA-Protein Nanostructures.
    Schiffels D; Szalai VA; Liddle JA
    ACS Nano; 2017 Jul; 11(7):6623-6629. PubMed ID: 28651051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
    Yoo J; Aksimentiev A
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20099-104. PubMed ID: 24277840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable Plasmonic Diastereomers Assembled by DNA Origami.
    Wang M; Dong J; Zhou C; Xie H; Ni W; Wang S; Jin H; Wang Q
    ACS Nano; 2019 Dec; 13(12):13702-13708. PubMed ID: 31550129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable motion of DNA origami mechanisms.
    Marras AE; Zhou L; Su HJ; Castro CE
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):713-8. PubMed ID: 25561550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA origami: the art of folding DNA.
    Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):58-66. PubMed ID: 22162047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.