BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38408406)

  • 1. Cell-mediated barriers in cancer immunosurveillance.
    Rezaie J; Chodari L; Mohammadpour-Asl S; Jafari A; Niknam Z
    Life Sci; 2024 Apr; 342():122528. PubMed ID: 38408406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy.
    Pitt JM; Marabelle A; Eggermont A; Soria JC; Kroemer G; Zitvogel L
    Ann Oncol; 2016 Aug; 27(8):1482-92. PubMed ID: 27069014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review.
    Eskandari-Malayeri F; Rezaei M
    Front Immunol; 2022; 13():996145. PubMed ID: 36275750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy.
    Jin Z; Sun X; Wang Y; Zhou C; Yang H; Zhou S
    Front Immunol; 2022; 13():1018903. PubMed ID: 36300110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tipping the scales: Immunotherapeutic strategies that disrupt immunosuppression and promote immune activation.
    Santiago-Sánchez GS; Hodge JW; Fabian KP
    Front Immunol; 2022; 13():993624. PubMed ID: 36159809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of regulatory T cells in cancer immunology and immunotherapy.
    Sugiyama D; Hinohara K; Nishikawa H
    Exp Dermatol; 2023 Mar; 32(3):256-263. PubMed ID: 36458459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.
    Lei X; Lei Y; Li JK; Du WX; Li RG; Yang J; Li J; Li F; Tan HB
    Cancer Lett; 2020 Feb; 470():126-133. PubMed ID: 31730903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining precision oncology and immunotherapy by targeting the MALT1 protease.
    Mempel TR; Krappmann D
    J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36270731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance.
    Jiang T; Chen X; Ren X; Yang JM; Cheng Y
    Drug Resist Updat; 2021 May; 56():100752. PubMed ID: 33765484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-immune cell components in tumor microenvironment influencing lung cancer Immunotherapy.
    Zhang J; Liu S; Chen X; Xu X; Xu F
    Biomed Pharmacother; 2023 Oct; 166():115336. PubMed ID: 37591126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.
    Balta E; Wabnitz GH; Samstag Y
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.
    Phuengkham H; Ren L; Shin IW; Lim YT
    Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counteracting Immunosuppression in the Tumor Microenvironment by Oncolytic Newcastle Disease Virus and Cellular Immunotherapy.
    Schirrmacher V; van Gool S; Stuecker W
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials.
    Wang J; Li L; Xu ZP
    Small Methods; 2024 Jan; 8(1):e2301005. PubMed ID: 37743260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reprogramming the tumor microenvironment to improve the efficacy of cancer immunotherapies.
    Faraj JA; Al-Athari AJH; Mohie SED; Kadhim IK; Jawad NM; Abbas WJ; Jalil AT
    Med Oncol; 2022 Sep; 39(12):239. PubMed ID: 36175691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Janus Face of Tumor Microenvironment Targeted by Immunotherapy.
    Buoncervello M; Gabriele L; Toschi E
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.