These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 38408487)
1. A patterned human neural tube model using microfluidic gradients. Xue X; Kim YS; Ponce-Arias AI; O'Laughlin R; Yan RZ; Kobayashi N; Tshuva RY; Tsai YH; Sun S; Zheng Y; Liu Y; Wong FCK; Surani A; Spence JR; Song H; Ming GL; Reiner O; Fu J Nature; 2024 Apr; 628(8007):391-399. PubMed ID: 38408487 [TBL] [Abstract][Full Text] [Related]
2. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Rifes P; Isaksson M; Rathore GS; Aldrin-Kirk P; Møller OK; Barzaghi G; Lee J; Egerod KL; Rausch DM; Parmar M; Pers TH; Laurell T; Kirkeby A Nat Biotechnol; 2020 Nov; 38(11):1265-1273. PubMed ID: 32451506 [TBL] [Abstract][Full Text] [Related]
3. Axial elongation of caudalized human organoids mimics aspects of neural tube development. Libby ARG; Joy DA; Elder NH; Bulger EA; Krakora MZ; Gaylord EA; Mendoza-Camacho F; Butts JC; McDevitt TC Development; 2021 Jun; 148(12):. PubMed ID: 34142711 [TBL] [Abstract][Full Text] [Related]
4. From signalling to form: the coordination of neural tube patterning. Frith TJR; Briscoe J; Boezio GLM Curr Top Dev Biol; 2024; 159():168-231. PubMed ID: 38729676 [TBL] [Abstract][Full Text] [Related]
5. Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities. Whye D; Wood D; Kim KH; Chen C; Makhortova N; Sahin M; Buttermore ED Curr Protoc; 2022 Oct; 2(10):e568. PubMed ID: 36264199 [TBL] [Abstract][Full Text] [Related]
6. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis. Gribaudo S; Robert R; van Sambeek B; Mirdass C; Lyubimova A; Bouhali K; Ferent J; Morin X; van Oudenaarden A; Nedelec S Nat Biotechnol; 2024 Aug; 42(8):1243-1253. PubMed ID: 37709912 [TBL] [Abstract][Full Text] [Related]
7. Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Zheng Y; Xue X; Resto-Irizarry AM; Li Z; Shao Y; Zheng Y; Zhao G; Fu J Sci Adv; 2019 Dec; 5(12):eaax5933. PubMed ID: 31844664 [TBL] [Abstract][Full Text] [Related]
8. Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system. Denham M; Hasegawa K; Menheniott T; Rollo B; Zhang D; Hough S; Alshawaf A; Febbraro F; Ighaniyan S; Leung J; Elliott DA; Newgreen DF; Pera MF; Dottori M Stem Cells; 2015 Jun; 33(6):1759-70. PubMed ID: 25753817 [TBL] [Abstract][Full Text] [Related]
10. Proliferation and recapitulation of developmental patterning associated with regulative regeneration of the spinal cord neural tube. Halasi G; Søviknes AM; Sigurjonsson O; Glover JC Dev Biol; 2012 May; 365(1):118-32. PubMed ID: 22370002 [TBL] [Abstract][Full Text] [Related]
11. Spinal motor axons and neural crest cells use different molecular guides for segmental migration through the rostral half-somite. Koblar SA; Krull CE; Pasquale EB; McLennan R; Peale FD; Cerretti DP; Bothwell M J Neurobiol; 2000 Mar; 42(4):437-47. PubMed ID: 10699981 [TBL] [Abstract][Full Text] [Related]
12. Noggin and basic FGF were implicated in forebrain fate and caudal fate, respectively, of the neural tube-like structures emerging in mouse ES cell culture. Chiba S; Kurokawa MS; Yoshikawa H; Ikeda R; Takeno M; Tadokoro M; Sekino H; Hashimoto T; Suzuki N Exp Brain Res; 2005 May; 163(1):86-99. PubMed ID: 15703886 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. Nitzan E; Avraham O; Kahane N; Ofek S; Kumar D; Kalcheim C BMC Biol; 2016 Mar; 14():23. PubMed ID: 27012662 [TBL] [Abstract][Full Text] [Related]
14. Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives. Wind M; Gogolou A; Manipur I; Granata I; Butler L; Andrews PW; Barbaric I; Ning K; Guarracino MR; Placzek M; Tsakiridis A Development; 2021 Mar; 148(6):. PubMed ID: 33658223 [TBL] [Abstract][Full Text] [Related]
15. Neural patterning in the vertebrate embryo. Altmann CR; Brivanlou AH Int Rev Cytol; 2001; 203():447-82. PubMed ID: 11131523 [TBL] [Abstract][Full Text] [Related]
16. Role of SHH in Patterning Human Pluripotent Cells towards Ventral Forebrain Fates. Brady MV; Vaccarino FM Cells; 2021 Apr; 10(4):. PubMed ID: 33923415 [TBL] [Abstract][Full Text] [Related]
17. Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro. Cooper F; Gentsch GE; Mitter R; Bouissou C; Healy LE; Rodriguez AH; Smith JC; Bernardo AS Stem Cell Reports; 2022 Apr; 17(4):894-910. PubMed ID: 35334218 [TBL] [Abstract][Full Text] [Related]
18. Morphogens and the control of cell proliferation and patterning in the spinal cord. Ulloa F; Briscoe J Cell Cycle; 2007 Nov; 6(21):2640-9. PubMed ID: 17912034 [TBL] [Abstract][Full Text] [Related]
19. Wnt-Notch Signaling Interactions During Neural and Astroglial Patterning of Human Stem Cells. Bejoy J; Bijonowski B; Marzano M; Jeske R; Ma T; Li Y Tissue Eng Part A; 2020 Apr; 26(7-8):419-431. PubMed ID: 31686622 [TBL] [Abstract][Full Text] [Related]
20. Anteroposterior Wnt-RA Gradient Defines Adhesion and Migration Properties of Neural Progenitors in Developing Spinal Cord. Shaker MR; Lee JH; Park SH; Kim JY; Son GH; Son JW; Park BH; Rhyu IJ; Kim H; Sun W Stem Cell Reports; 2020 Oct; 15(4):898-911. PubMed ID: 32976767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]