BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38408490)

  • 1. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy.
    Su Y; Cao N; Zhang D; Wang M
    Ageing Res Rev; 2024 Apr; 96():102248. PubMed ID: 38408490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Klotho ameliorated cognitive deficits in a temporal lobe epilepsy rat model by inhibiting ferroptosis.
    Xiang T; Luo X; Zeng C; Li S; Ma M; Wu Y
    Brain Res; 2021 Dec; 1772():147668. PubMed ID: 34592245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CREB Protects against Temporal Lobe Epilepsy Associated with Cognitive Impairment by Controlling Oxidative Neuronal Damage.
    Xing J; Han D; Xu D; Li X; Sun L
    Neurodegener Dis; 2019; 19(5-6):225-237. PubMed ID: 32417838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycyrrhizic acid protects against temporal lobe epilepsy in young rats by regulating neuronal ferroptosis through the miR-194-5p/PTGS2 axis.
    Yi TT; Zhang LM; Huang XN
    Kaohsiung J Med Sci; 2023 Feb; 39(2):154-165. PubMed ID: 36647717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of ferroptosis processes ameliorates cognitive impairment in kainic acid-induced temporal lobe epilepsy in rats.
    Ye Q; Zeng C; Dong L; Wu Y; Huang Q; Wu Y
    Am J Transl Res; 2019; 11(2):875-884. PubMed ID: 30899387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy.
    Zhu X; Zhang A; Dong J; Yao Y; Zhu M; Xu K; Al Hamda MH
    Brain Res Bull; 2019 Oct; 152():175-183. PubMed ID: 31336125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferroptosis and Its Role in Epilepsy.
    Cai Y; Yang Z
    Front Cell Neurosci; 2021; 15():696889. PubMed ID: 34335189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy.
    Rowley S; Patel M
    Free Radic Biol Med; 2013 Sep; 62():121-131. PubMed ID: 23411150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRAK1-Mediated Abnormality of Mitochondrial Fission Increases Seizure Susceptibility in Temporal Lobe Epilepsy.
    Wu H; Liu Y; Li H; Du C; Li K; Dong S; Meng Q; Zhang H
    Mol Neurobiol; 2021 Mar; 58(3):1237-1247. PubMed ID: 33119838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GSDMD knockdown exacerbates hippocampal damage and seizure susceptibility by crosstalk between pyroptosis and apoptosis in kainic acid-induced temporal lobe epilepsy.
    Lin A; Guo Y; Zhang H; Lin P; Tao K; Jiang L; Xu D; Chen B
    Biochim Biophys Acta Mol Basis Dis; 2023 Jun; 1869(5):166687. PubMed ID: 36921736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Metabolism and Ferroptosis in Epilepsy.
    Chen S; Chen Y; Zhang Y; Kuang X; Liu Y; Guo M; Ma L; Zhang D; Li Q
    Front Neurosci; 2020; 14():601193. PubMed ID: 33424539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia.
    Wu T; Liang X; Liu X; Li Y; Wang Y; Kong L; Tang M
    Part Fibre Toxicol; 2020 Jul; 17(1):30. PubMed ID: 32652997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria, oxidative stress, and temporal lobe epilepsy.
    Waldbaum S; Patel M
    Epilepsy Res; 2010 Jan; 88(1):23-45. PubMed ID: 19850449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visually or auditorily induced seizures involve the activation of nonhippocampal brain areas and hippocampal removal does not alleviate seizures in a mouse model of temporal lobe epilepsy.
    Bello ST; Xu S; Li X; Ren J; Jendrichovsky P; Jiang F; Xiao Z; Wan X; Chen X; He J
    Epilepsia; 2024 Jan; 65(1):218-237. PubMed ID: 38032046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do recurrent seizures cause neuronal damage? A series of studies with MRI volumetry in adults with partial epilepsy.
    Kälviäinen R; Salmenperä T
    Prog Brain Res; 2002; 135():279-95. PubMed ID: 12143348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The key roles of organelles and ferroptosis in Alzheimer's disease.
    Long HZ; Cheng Y; Zhou ZW; Luo HY; Wen DD; Gao LC
    J Neurosci Res; 2022 Jun; 100(6):1257-1280. PubMed ID: 35293012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Female mice lacking ERβ display excitatory/inhibitory synaptic imbalance to drive the pathogenesis of temporal lobe epilepsy.
    Wang Z; Xie R; Yang X; Yin H; Li X; Liu T; Ma Y; Gao J; Zang Z; Ruan R; Li Y; Huang K; Chen Q; Shen K; Lv S; Zhang C; Yang H; Warner M; Gustafsson JA; Liu S; Fan X
    Theranostics; 2021; 11(12):6074-6089. PubMed ID: 33897900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases.
    Tian HY; Huang BY; Nie HF; Chen XY; Zhou Y; Yang T; Cheng SW; Mei ZG; Ge JW
    Brain Sci; 2023 Sep; 13(10):. PubMed ID: 37891735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticonvulsant Effects of Royal Jelly in Kainic Acid-Induced Animal Model of Temporal Lobe Epilepsy Through Antioxidant Activity.
    Hashemi P; Moloudi MR; Vahabzadeh Z; Izadpanah E
    Neurochem Res; 2023 Jul; 48(7):2187-2195. PubMed ID: 36856963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Clock gene regulates kainic acid-induced seizures through inhibiting ferroptosis in mice.
    Wang F; Guo L; Wu Z; Zhang T; Dong D; Wu B
    J Pharm Pharmacol; 2022 Nov; 74(11):1640-1650. PubMed ID: 35704277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.