These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38408504)
1. Modelling photoperiod in enhancing hydrogen production from Chlorella vulgaris sp. while bioremediating ammonium and organic pollutants in municipal wastewater. Ardo FM; Khoo KS; Ahmad Sobri MZ; Suparmaniam U; Ethiraj B; Anwar AF; Lam SM; Sin JC; Shahid MK; Ansar S; Ramli A; Lim JW Environ Pollut; 2024 Apr; 346():123648. PubMed ID: 38408504 [TBL] [Abstract][Full Text] [Related]
2. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods. Guo P; Zhang Y; Zhao Y Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29543784 [No Abstract] [Full Text] [Related]
3. Comparative evaluation of four Chlorella species treating mariculture wastewater under different photoperiods: Nitrogen removal performance, enzyme activity, and antioxidant response. Chen W; Liu J; Chu G; Wang Q; Zhang Y; Gao C; Gao M Bioresour Technol; 2023 Oct; 386():129511. PubMed ID: 37468008 [TBL] [Abstract][Full Text] [Related]
4. Kinetic study of nutrients removal from municipal wastewater by Chaudhary R; Tong YW; Dikshit AK Environ Technol; 2020 Feb; 41(5):617-626. PubMed ID: 30074855 [TBL] [Abstract][Full Text] [Related]
5. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Mujtaba G; Lee K Water Res; 2017 Sep; 120():174-184. PubMed ID: 28486168 [TBL] [Abstract][Full Text] [Related]
6. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden. Lage S; Toffolo A; Gentili FG Chemosphere; 2021 Aug; 276():130122. PubMed ID: 33690042 [TBL] [Abstract][Full Text] [Related]
7. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772 [TBL] [Abstract][Full Text] [Related]
8. Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. Leong WH; Azella Zaine SN; Ho YC; Uemura Y; Lam MK; Khoo KS; Kiatkittipong W; Cheng CK; Show PL; Lim JW J Environ Manage; 2019 Nov; 249():109384. PubMed ID: 31419674 [TBL] [Abstract][Full Text] [Related]
9. Microalgae based wastewater treatment: a shifting paradigm for the developing nations. Moondra N; Jariwala ND; Christian RA Int J Phytoremediation; 2021; 23(7):765-771. PubMed ID: 33327739 [TBL] [Abstract][Full Text] [Related]
10. Residual palm kernel expeller as the support material and alimentation provider in enhancing attached microalgal growth for quality biodiesel production. Rawindran H; Leong WH; Suparmaniam U; Liew CS; Raksasat R; Kiatkittipong W; Mohamad M; Ghani NA; Abdelfattah EA; Lam MK; Lim JW J Environ Manage; 2022 Aug; 316():115225. PubMed ID: 35550962 [TBL] [Abstract][Full Text] [Related]
11. Carbon-to-nitrogen and substrate-to-inoculum ratio adjustments can improve co-digestion performance of microalgal biomass obtained from domestic wastewater treatment. Calicioglu O; Demirer GN Environ Technol; 2019 Feb; 40(5):614-624. PubMed ID: 29076406 [TBL] [Abstract][Full Text] [Related]
12. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. Kang Z; Kim BH; Ramanan R; Choi JE; Yang JW; Oh HM; Kim HS J Microbiol Biotechnol; 2015 Jan; 25(1):109-18. PubMed ID: 25341470 [TBL] [Abstract][Full Text] [Related]
13. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Gupta PL; Choi HJ; Lee SM Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689 [TBL] [Abstract][Full Text] [Related]
14. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste. Zuliani L; Frison N; Jelic A; Fatone F; Bolzonella D; Ballottari M Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27735859 [TBL] [Abstract][Full Text] [Related]
15. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal. Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001 [TBL] [Abstract][Full Text] [Related]
16. Carbon dissipation from surgical cotton production wastewater using macroalgae, microalgae, and activated sludge microbes. Babu AR; Sharma NK; Manickam M Environ Sci Pollut Res Int; 2022 Dec; 29(57):86192-86201. PubMed ID: 34746986 [TBL] [Abstract][Full Text] [Related]
17. Selenium recovery from wastewater by the green microalgae Chlorella vulgaris and Scenedesmus sp. de Morais EG; Murillo AM; Lens PNL; Ferrer I; Uggetti E Sci Total Environ; 2022 Dec; 851(Pt 2):158337. PubMed ID: 36030875 [TBL] [Abstract][Full Text] [Related]
18. Acid precipitation followed by microalgae (Chlorella vulgaris) cultivation as a new approach for poultry slaughterhouse wastewater treatment. Terán Hilares R; Garcia Bustos KA; Sanchez Vera FP; Colina Andrade GJ; Pacheco Tanaka DA Bioresour Technol; 2021 Sep; 335():125284. PubMed ID: 34022477 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with Zieliński M; Dębowski M; Szwaja S; Kisielewska M Water Environ Res; 2018 Feb; 90(2):155-163. PubMed ID: 28766484 [TBL] [Abstract][Full Text] [Related]
20. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]