BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38408585)

  • 1. Synthesis of renewable furan-based phosphate and the superior flame retardancy in biodegradable polylactide.
    Li D; Tu Z; Wang B; Li M; Jia Z; Wei Z
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130435. PubMed ID: 38408585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomass phosphonamide enables biodegradable polylactide with favorable flame retardancy and rapid crystallization.
    Li D; Li M; Jia Z; Wei Z
    Int J Biol Macromol; 2024 Jun; 274(Pt 1):133365. PubMed ID: 38914410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of poly(ionic liquid) and phosphoramide on flame retardancy and crystallization of poly(lactic acid).
    Li C; Wang B; Yang Y; Chai J; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1344-1355. PubMed ID: 36370854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Enhancement of Flame Retardancy Behavior of Glass-Fiber Reinforced Polylactide Composites through Using Phosphorus-Based Flame Retardants and Chain Modifiers.
    Yargici Kovanci C; Nofar M; Ghanbari A
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame-retardant poly(L-lactic acid) with enhanced UV protection and well-preserved mechanical properties by a furan-containing polyphosphoramide.
    Yu L; Huo S; Wang C; Ye G; Song P; Feng J; Fang Z; Wang H; Liu Z
    Int J Biol Macromol; 2023 Apr; 234():123707. PubMed ID: 36796568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecularly engineered fully bio-derived phosphorylated furan-based flame retardant for biomass-based fabrics.
    Chen S; Liang F; Jin L; Ji C; Xu N; Qian K; Guo W
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):129836. PubMed ID: 38307435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of phosphoramide derivatives in flame retardancy, thermal degradation and crystallization behaviors of polylactic acid.
    Hu X; Wang B; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Oct; 219():558-570. PubMed ID: 35907467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Mechanism of Toughened and Flame-Retardant Bio-Based Polylactic Acid Composites.
    Xu K; Yan C; Du C; Xu Y; Li B; Liu L
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green and economic flame retardant prepared by the one-step method for polylactic acid.
    Cheng H; Wu Y; Hsu W; Lin F; Wang S; Zeng J; Zhu Q; Song L
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127291. PubMed ID: 37806420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of multifunctional highly-efficient bio-based fire-retardant poly(lactic acid) composites for simultaneously improving thermal, crystallization and fire safety properties.
    Xiao D; Lv JX; Wu FJ; Wang ZB; Harre K; Chen JH; Gohs U; Wang DY
    Int J Biol Macromol; 2022 Aug; 215():646-656. PubMed ID: 35777508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable thermoset poly(lactic acid) resin containing phosphorus: Flame retardancy, mechanical properties and its soil degradation behavior.
    He J; Yu T; Li Y
    Int J Biol Macromol; 2023 Apr; 235():123737. PubMed ID: 36805506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-light polylactic acid/combination composite foam: A fully biodegradable flame retardant material.
    Jia L; Huang W; Zhao Y; Wen S; Yu Z; Zhang Z
    Int J Biol Macromol; 2022 Nov; 220():754-765. PubMed ID: 35985399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid.
    Zhang Q; Liu H; Guan J; Yang X; Luo B
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and flame retardancy of polylactide composites incorporating tricresyl phosphate and modified microcrystalline cellulose from oil palm empty fruit bunch waste.
    Suparanon T; Phusunti N; Phetwarotai W
    Int J Biol Macromol; 2023 Dec; 253(Pt 8):127580. PubMed ID: 37866581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of carbon-based flame retardant composite with reinforced and toughened property and its application in polylactic acid.
    Xiao Y; Yang Y; Luo Q; Tang B; Guan J; Tian Q
    RSC Adv; 2022 Aug; 12(34):22236-22243. PubMed ID: 36043090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of bio-based flame retardant/natural rubber inorganic-organic hybrid and its flame retarding and toughening effect for polylactic acid.
    Ma C; Zhang Y; Zhao Z; Wang J; Chen Y; Qian L; Fang Z; Song R; Song P
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128378. PubMed ID: 38000569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Degradation Characteristic and Flame Retardancy of Polylactide-Based Nanobiocomposites.
    Malkappa K; Bandyopadhyay J; Ray SS
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30332755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane.
    Zhu S; Gong W; Luo J; Meng X; Xin Z; Wu J; Jiang Z
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31382664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewable vanillin based flame retardant for poly(lactic acid): a way to enhance flame retardancy and toughness simultaneously.
    Zhao P; Liu Z; Wang X; Pan YT; Kuehnert I; Gehde M; Wang DY; Leuteritz A
    RSC Adv; 2018 Dec; 8(73):42189-42199. PubMed ID: 35558792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flame Retardancy and Toughness of Poly(Lactic Acid)/GNR/SiAHP Composites.
    Wu N; Yu J; Lang W; Ma X; Yang Y
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.