These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38408813)

  • 1. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles.
    Qi Y; Li D; Zhang S; Li F; Hua T
    J Environ Sci (China); 2024 Jul; 141():102-128. PubMed ID: 38408813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology.
    Singh J; Saharan V; Kumar S; Gulati P; Kapoor RK
    Crit Rev Biotechnol; 2018 Sep; 38(6):883-901. PubMed ID: 29281904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of pressure-driven membrane technologies for the removal of arsenic from drinking water].
    Li X; Hu B; Gu P
    Wei Sheng Yan Jiu; 2007 May; 36(3):395-8. PubMed ID: 17712970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pre-oxidation on low pressure membrane (LPM) for water and wastewater treatment: A review.
    Li K; Wen G; Li S; Chang H; Shao S; Huang T; Li G; Liang H
    Chemosphere; 2019 Sep; 231():287-300. PubMed ID: 31129410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia removal in the carbon contactor of a hybrid membrane process.
    Stoquart C; Servais P; Barbeau B
    Water Res; 2014 Dec; 67():255-66. PubMed ID: 25459222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes.
    Mo Y; Zhang L; Zhao X; Li J; Wang L
    J Hazard Mater; 2022 Aug; 436():129162. PubMed ID: 35643008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial ecology of biofiltration used for producing safe drinking water.
    Bai X; Dinkla IJT; Muyzer G
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):4813-4829. PubMed ID: 35771243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of bisphenol A by electrochemical carbon-nanotube filter: Influential factors and degradation pathway.
    Bakr AR; Rahaman MS
    Chemosphere; 2017 Oct; 185():879-887. PubMed ID: 28746997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of ozonation and biologically enhanced activated carbon filtration on the composition of micropollutants in drinking water.
    Li WG; Qin W; Song Y; Zheng ZJ; Lv LY
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33927-33935. PubMed ID: 30003486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues: A review on its potential applications, advances, and challenges.
    Wang X; Li F; Hu X; Hua T
    Sci Total Environ; 2021 Aug; 784():146912. PubMed ID: 33901964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic remediation from drinking water using Fenton's reagent with slow sand filter.
    Jasudkar D; Rakhunde R; Deshpande L; Labhasetwar P; Juneja HD
    Bull Environ Contam Toxicol; 2012 Dec; 89(6):1231-4. PubMed ID: 23052589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in alumina ceramic membranes for water purification: Status and prospects.
    Wang Y; Ma B; Ulbricht M; Dong Y; Zhao X
    Water Res; 2022 Nov; 226():119173. PubMed ID: 36252299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.
    Borea L; Naddeo V; Belgiorno V
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):321-333. PubMed ID: 27718113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multi-barrier treatment.
    Sudhakaran S; Maeng SK; Amy G
    Chemosphere; 2013 Jul; 92(6):731-7. PubMed ID: 23664475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality of drinking water from the agricultural area treated with pitcher water filters.
    Królak E; Raczuk J; Sakowicz D; Biardzka E
    Rocz Panstw Zakl Hig; 2018; 69(1):87-93. PubMed ID: 29519119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: a review.
    Vlad S; Anderson WB; Peldszus S; Huck PM
    J Water Health; 2014 Dec; 12(4):601-17. PubMed ID: 25473970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health.
    Simazaki D; Kubota R; Suzuki T; Akiba M; Nishimura T; Kunikane S
    Water Res; 2015 Jun; 76():187-200. PubMed ID: 25835589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan.
    Yang GC; Yen CH; Wang CL
    J Hazard Mater; 2014 Jul; 277():53-61. PubMed ID: 24703109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced drinking water production by 1 kDa hollow fiber nanofiltration - Biological activated carbon filtration (HFNF - BACF) enhances biological stability and reduces micropollutant levels compared with conventional surface water treatment.
    Schurer R; de Ridder DJ; Schippers JC; Hijnen WAM; Vredenbregt L; van der Wal A
    Chemosphere; 2023 Apr; 321():138049. PubMed ID: 36746252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.