These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38408822)
1. Biogenic volatile organic compounds dominated the near-surface ozone generation in Sichuan Basin, China, during fall and wintertime. Huang D; Li Q; Han Y; Xia SY; Zhou J; Che H; Lu K; Yang F; Long X; Chen Y J Environ Sci (China); 2024 Jul; 141():215-224. PubMed ID: 38408822 [TBL] [Abstract][Full Text] [Related]
2. Worsening ozone air pollution with reduced NO Zhao M; Zhang Y; Pei C; Chen T; Mu J; Liu Y; Wang Y; Wang W; Xue L J Environ Manage; 2022 Dec; 324():116327. PubMed ID: 36183531 [TBL] [Abstract][Full Text] [Related]
3. Chemical reactivity of volatile organic compounds and their effects on ozone formation in a petrochemical industrial area of Lanzhou, Western China. Guo W; Yang Y; Chen Q; Zhu Y; Zhang Y; Zhang Y; Liu Y; Li G; Sun W; She J Sci Total Environ; 2022 Sep; 839():155901. PubMed ID: 35569665 [TBL] [Abstract][Full Text] [Related]
4. The role of NO Zhan J; Zheng F; Xie R; Liu J; Chu B; Ma J; Xie D; Meng X; Huang Q; He H; Liu Y J Environ Manage; 2023 Nov; 345():118645. PubMed ID: 37499414 [TBL] [Abstract][Full Text] [Related]
5. Quantification for photochemical loss of volatile organic compounds upon ozone formation chemistry at an industrial city (Zibo) in North China Plain. Wang W; Zheng Z; Liu Y; Xu B; Yang W; Wang X; Geng C; Bai Z Environ Res; 2024 Sep; 256():119088. PubMed ID: 38768881 [TBL] [Abstract][Full Text] [Related]
6. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
7. [Analysis of a Typical Ozone Pollution Process in Guangzhou in Winter]. Pei CL; Xie YT; Chen X; Zhang T; Qiu XN; Wang Y; Wang ZH; Li M Huan Jing Ke Xue; 2022 Oct; 43(10):4305-4315. PubMed ID: 36224117 [TBL] [Abstract][Full Text] [Related]
8. Abundant oxygenated volatile organic compounds and their contribution to photochemical pollution in subtropical Hong Kong. Hui L; Feng X; Yuan Q; Chen Y; Xu Y; Zheng P; Lee S; Wang Z Environ Pollut; 2023 Oct; 335():122287. PubMed ID: 37562529 [TBL] [Abstract][Full Text] [Related]
9. [Ozone Formation and Key VOCs of a Continuous Summertime O Sun XY; Zhao M; Shen HQ; Liu Y; Du MY; Zhang WJ; Xu HY; Fan GL; Gong HL; Li QS; Li DQ; Gao XM; Zhang LN Huan Jing Ke Xue; 2022 Feb; 43(2):686-695. PubMed ID: 35075842 [TBL] [Abstract][Full Text] [Related]
10. Particulate matter, nitrogen oxides, ozone, and select volatile organic compounds during a winter sampling period in Logan, Utah, USA. Mukerjee S; Smith L; Long R; Lonneman W; Kaushik S; Colon M; Oliver K; Whitaker D J Air Waste Manag Assoc; 2019 Jun; 69(6):778-788. PubMed ID: 30897029 [TBL] [Abstract][Full Text] [Related]
11. Pollution characteristics, sources, and photochemical roles of ambient carbonyl compounds in summer of Beijing, China. Chai W; Wang M; Li J; Tang G; Zhang G; Chen W Environ Pollut; 2023 Nov; 336():122403. PubMed ID: 37595733 [TBL] [Abstract][Full Text] [Related]
12. Atmospheric oxidation capacity and O Chen G; Liu T; Chen J; Xu L; Hu B; Yang C; Fan X; Li M; Hong Y; Ji X; Chen J; Zhang F J Environ Sci (China); 2024 Feb; 136():68-80. PubMed ID: 37923476 [TBL] [Abstract][Full Text] [Related]
13. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. An J; Zou J; Wang J; Lin X; Zhu B Environ Sci Pollut Res Int; 2015 Dec; 22(24):19607-17. PubMed ID: 26272292 [TBL] [Abstract][Full Text] [Related]
14. [Characteristics of VOCs and Formation Potentials of O Yi XX; Li JH; Li GH; Lu ZZ; Sun ZG; Gao J; Deng SX Huan Jing Ke Xue; 2022 Jan; 43(1):140-149. PubMed ID: 34989498 [TBL] [Abstract][Full Text] [Related]
15. Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs. Wang J; Zhang Y; Wu Z; Luo S; Song W; Wang X J Environ Sci (China); 2022 Apr; 114():322-333. PubMed ID: 35459495 [TBL] [Abstract][Full Text] [Related]
16. Assessment of summertime O Wang X; Yin S; Zhang R; Yuan M; Ying Q Sci Total Environ; 2022 Mar; 813():152449. PubMed ID: 34942256 [TBL] [Abstract][Full Text] [Related]
17. Biogenic volatile organic compounds in forest therapy base: A source of air pollutants or a healthcare function? Wu J; Wang Q; Xu C; Lun X; Wang L; Gao Y; Huang L; Zhang Q; Li L; Liu B; Liu H; Xu L Sci Total Environ; 2024 Jun; 931():172944. PubMed ID: 38701919 [TBL] [Abstract][Full Text] [Related]
18. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015. Dreessen J; Sullivan J; Delgado R J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934 [TBL] [Abstract][Full Text] [Related]
19. Elucidating Contributions of Anthropogenic Volatile Organic Compounds and Particulate Matter to Ozone Trends over China. Li C; Zhu Q; Jin X; Cohen RC Environ Sci Technol; 2022 Sep; 56(18):12906-12916. PubMed ID: 36083302 [TBL] [Abstract][Full Text] [Related]
20. Identify the key emission sources for mitigating ozone pollution: A case study of urban area in the Yangtze River Delta region, China. Zhang X; Ma Q; Chu W; Ning M; Liu X; Xiao F; Cai N; Wu Z; Yan G Sci Total Environ; 2023 Sep; 892():164703. PubMed ID: 37290640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]