These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38408960)

  • 1. Comprehensive machine learning-based preoperative blood features predict the prognosis for ovarian cancer.
    Wu M; Gu S; Yang J; Zhao Y; Sheng J; Cheng S; Xu S; Wu Y; Ma M; Luo X; Zhang H; Wang Y; Zhao A
    BMC Cancer; 2024 Feb; 24(1):267. PubMed ID: 38408960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exosome-derived lncRNA signature identified by machine learning associated with prognosis and biomarkers for immunotherapy in ovarian cancer.
    Cui Y; Zhang W; Lu W; Feng Y; Wu X; Zhuo Z; Zhang D; Zhang Y
    Front Immunol; 2024; 15():1228235. PubMed ID: 38404588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning.
    Zhao B; Pei L
    BMC Med Genomics; 2023 Oct; 16(1):230. PubMed ID: 37784081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers.
    Kawakami E; Tabata J; Yanaihara N; Ishikawa T; Koseki K; Iida Y; Saito M; Komazaki H; Shapiro JS; Goto C; Akiyama Y; Saito R; Saito M; Takano H; Yamada K; Okamoto A
    Clin Cancer Res; 2019 May; 25(10):3006-3015. PubMed ID: 30979733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer.
    Wang L; Chen X; Song L; Zou H
    Anal Cell Pathol (Amst); 2023; 2023():7365503. PubMed ID: 37868825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multimodal radiomic machine learning approach to predict the LCK expression and clinical prognosis in high-grade serous ovarian cancer.
    Zhan F; He L; Yu Y; Chen Q; Guo Y; Wang L
    Sci Rep; 2023 Sep; 13(1):16397. PubMed ID: 37773310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifactor assessment of ovarian cancer reveals immunologically interpretable molecular subtypes with distinct prognoses.
    Guo Y; Li S; Li C; Wang L; Ning W
    Front Immunol; 2023; 14():1326018. PubMed ID: 38143770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A prognostic model of patients with ovarian mucinous adenocarcinoma: a population-based analysis.
    Yang L; Yu J; Zhang S; Shan Y; Li Y; Xu L; Zhang J; Zhang J
    J Ovarian Res; 2022 Feb; 15(1):26. PubMed ID: 35168642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of copper metabolism-related subtypes and establishment of the prognostic model in ovarian cancer.
    Zhao S; Zhang X; Gao F; Chi H; Zhang J; Xia Z; Cheng C; Liu J
    Front Endocrinol (Lausanne); 2023; 14():1145797. PubMed ID: 36950684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of machine learning techniques for predicting survival in ovarian cancer.
    Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using machine learning to predict ovarian cancer.
    Lu M; Fan Z; Xu B; Chen L; Zheng X; Li J; Znati T; Mi Q; Jiang J
    Int J Med Inform; 2020 Sep; 141():104195. PubMed ID: 32485554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing four cuproptosis-related lncRNAs signature to predict prognosis and immune activity in ovarian cancer.
    Liu L; Wang Q; Zhou JY; Zhang B
    J Ovarian Res; 2023 Apr; 16(1):88. PubMed ID: 37122030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature Selection is Critical for 2-Year Prognosis in Advanced Stage High Grade Serous Ovarian Cancer by Using Machine Learning.
    Laios A; Katsenou A; Tan YS; Johnson R; Otify M; Kaufmann A; Munot S; Thangavelu A; Hutson R; Broadhead T; Theophilou G; Nugent D; De Jong D
    Cancer Control; 2021; 28():10732748211044678. PubMed ID: 34693730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and validation of a novel aging-related gene signature and prognostic nomogram for predicting the overall survival in ovarian cancer.
    Liu L; Zhao J; Du X; Zhao Y; Zou C; Zhou H; Li W; Yan X
    Cancer Med; 2021 Dec; 10(24):9097-9114. PubMed ID: 34825509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Establishment and application of a nomogram model for prognostic risk prediction in patients with epithelial ovarian cancer].
    Li Z; Cai XW; Yan P; Zhou D; He MM; Deng L; Wang YZ; Liang ZQ
    Zhonghua Fu Chan Ke Za Zhi; 2022 Mar; 57(3):190-197. PubMed ID: 35385956
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer.
    Alabi RO; Mäkitie AA; Pirinen M; Elmusrati M; Leivo I; Almangush A
    Int J Med Inform; 2021 Jan; 145():104313. PubMed ID: 33142259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosylation-Related Genes Predict the Prognosis and Immune Fraction of Ovarian Cancer Patients Based on Weighted Gene Coexpression Network Analysis (WGCNA) and Machine Learning.
    Zhao C; Xiong K; Zhao F; Adam A; Li X
    Oxid Med Cell Longev; 2022; 2022():3665617. PubMed ID: 35281472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies.
    Wu Q; Tian R; He X; Liu J; Ou C; Li Y; Fu X
    Front Immunol; 2023; 14():1164408. PubMed ID: 37090728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two machine learning-based nomogram to predict risk and prognostic factors for liver metastasis from pancreatic neuroendocrine tumors: a multicenter study.
    Li J; Huang L; Liao C; Liu G; Tian Y; Chen S
    BMC Cancer; 2023 Jun; 23(1):529. PubMed ID: 37296397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery.
    Tan Y; Zhang ST; Wei JW; Dong D; Wang XC; Yang GQ; Tian J; Zhang H
    Eur Radiol; 2019 Jul; 29(7):3325-3337. PubMed ID: 30972543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.