These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38409056)

  • 1. A comparison of marker gene selection methods for single-cell RNA sequencing data.
    Pullin JM; McCarthy DJ
    Genome Biol; 2024 Feb; 25(1):56. PubMed ID: 38409056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rank-based marker selection method for high throughput scRNA-seq data.
    Vargo AHS; Gilbert AC
    BMC Bioinformatics; 2020 Oct; 21(1):477. PubMed ID: 33097004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AtacAnnoR: a reference-based annotation tool for single cell ATAC-seq data.
    Tian L; Xie Y; Xie Z; Tian J; Tian W
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37497729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline.
    Knight CH; Khan F; Patel A; Gill US; Okosun J; Wang J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of cell markers from single cell RNA-seq with sc2marker.
    Li R; Banjanin B; Schneider RK; Costa IG
    BMC Bioinformatics; 2022 Jul; 23(1):276. PubMed ID: 35831796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation.
    Lasri A; Shahrezaei V; Sturrock M
    BMC Bioinformatics; 2022 Jun; 23(1):236. PubMed ID: 35715748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of single-cell classifiers for single-cell RNA sequencing data sets.
    Zhao X; Wu S; Fang N; Sun X; Fan J
    Brief Bioinform; 2020 Sep; 21(5):1581-1595. PubMed ID: 31675098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.
    You Y; Tian L; Su S; Dong X; Jabbari JS; Hickey PF; Ritchie ME
    Genome Biol; 2021 Dec; 22(1):339. PubMed ID: 34906205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis.
    Xi NM; Li JJ
    STAR Protoc; 2021 Sep; 2(3):100699. PubMed ID: 34382023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data.
    Koch FC; Sutton GJ; Voineagu I; Vafaee F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data.
    Holland CH; Tanevski J; Perales-Patón J; Gleixner J; Kumar MP; Mereu E; Joughin BA; Stegle O; Lauffenburger DA; Heyn H; Szalai B; Saez-Rodriguez J
    Genome Biol; 2020 Feb; 21(1):36. PubMed ID: 32051003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data.
    Wang X; Lian Q; Dong H; Xu S; Su Y; Wu X
    Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39049508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data.
    Xi NM; Li JJ
    Cell Syst; 2021 Feb; 12(2):176-194.e6. PubMed ID: 33338399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods.
    Dai C; Jiang Y; Yin C; Su R; Zeng X; Zou Q; Nakai K; Wei L
    Nucleic Acids Res; 2022 May; 50(9):4877-4899. PubMed ID: 35524568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data.
    Huang Q; Liu Y; Du Y; Garmire LX
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):267-281. PubMed ID: 33359678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information.
    Liu Z; Sun D; Wang C
    Genome Biol; 2022 Oct; 23(1):218. PubMed ID: 36253792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.