These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38409056)
1. A comparison of marker gene selection methods for single-cell RNA sequencing data. Pullin JM; McCarthy DJ Genome Biol; 2024 Feb; 25(1):56. PubMed ID: 38409056 [TBL] [Abstract][Full Text] [Related]
2. A rank-based marker selection method for high throughput scRNA-seq data. Vargo AHS; Gilbert AC BMC Bioinformatics; 2020 Oct; 21(1):477. PubMed ID: 33097004 [TBL] [Abstract][Full Text] [Related]
3. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies. Baran Y; Doğan B Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895 [TBL] [Abstract][Full Text] [Related]
4. AtacAnnoR: a reference-based annotation tool for single cell ATAC-seq data. Tian L; Xie Y; Xie Z; Tian J; Tian W Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37497729 [TBL] [Abstract][Full Text] [Related]
11. Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis. Xi NM; Li JJ STAR Protoc; 2021 Sep; 2(3):100699. PubMed ID: 34382023 [TBL] [Abstract][Full Text] [Related]
12. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies. Das S; Rai A; Merchant ML; Cave MC; Rai SN Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896 [TBL] [Abstract][Full Text] [Related]
13. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data. Koch FC; Sutton GJ; Voineagu I; Vafaee F Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742 [TBL] [Abstract][Full Text] [Related]
14. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Holland CH; Tanevski J; Perales-Patón J; Gleixner J; Kumar MP; Mereu E; Joughin BA; Stegle O; Lauffenburger DA; Heyn H; Szalai B; Saez-Rodriguez J Genome Biol; 2020 Feb; 21(1):36. PubMed ID: 32051003 [TBL] [Abstract][Full Text] [Related]
15. Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data. Wang X; Lian Q; Dong H; Xu S; Su Y; Wu X Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39049508 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data. Xi NM; Li JJ Cell Syst; 2021 Feb; 12(2):176-194.e6. PubMed ID: 33338399 [TBL] [Abstract][Full Text] [Related]
17. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
18. scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods. Dai C; Jiang Y; Yin C; Su R; Zeng X; Zou Q; Nakai K; Wei L Nucleic Acids Res; 2022 May; 50(9):4877-4899. PubMed ID: 35524568 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data. Huang Q; Liu Y; Du Y; Garmire LX Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):267-281. PubMed ID: 33359678 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information. Liu Z; Sun D; Wang C Genome Biol; 2022 Oct; 23(1):218. PubMed ID: 36253792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]