These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38409340)

  • 1. Microplastic separation and enrichment in microchannels under derivative electric field gradient by bipolar electrode reactions.
    Sun Z; Ma C; Yu C; Li Z
    Sci Rep; 2024 Feb; 14(1):4626. PubMed ID: 38409340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Particle Separation Driven by 3D Ag-PDMS Electrodes with Dielectric Electrophoretic Force Coupled with Inertia Force.
    Li X; Duan J; Qu Z; Wang J; Ji M; Zhang B
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filtering and continuously separating microplastics from water using electric field gradients formed electrochemically in the absence of buffer.
    Thompson JR; Wilder LM; Crooks RM
    Chem Sci; 2021 Oct; 12(41):13744-13755. PubMed ID: 34760159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-Field-Assisted Dielectrophoretic Microchips for High-Efficiency Sheathless Particle/Cell Separation with Dual Mode.
    Shen S; Yi Z; Li X; Xie S; Jin M; Zhou G; Yan Z; Shui L
    Anal Chem; 2021 Jun; 93(21):7606-7615. PubMed ID: 34003009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling a Dielectrophoretic Microfluidic Device with Vertical Interdigitated Transducer Electrodes for Separation of Microparticles Based on Size.
    Alnaimat F; Mathew B; Hilal-Alnaqbi A
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemically-gated delivery of analyte bands in microfluidic devices using bipolar electrodes.
    Scida K; Sheridan E; Crooks RM
    Lab Chip; 2013 Jun; 13(12):2292-9. PubMed ID: 23657767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DC-Dielectrophoretic Manipulation and Isolation of Microplastic Particle-Treated Microalgae Cells in Asymmetric-Orifice-Based Microfluidic Chip.
    Gao T; Zhao K; Zhang J; Zhang K
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoretic Microfluidic Device for Separating Microparticles Based on Size with Sub-Micron Resolution.
    Krishna S; Alnaimat F; Hilal-Alnaqbi A; Khashan S; Mathew B
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32629991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis.
    Derakhshan R; Bozorgzadeh A; Ramiar A
    J Chromatogr A; 2023 Aug; 1702():464079. PubMed ID: 37263054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipolar Janus particle assembly in microdevice.
    Hossan MR; Gopmandal PP; Dillon R; Dutta P
    Electrophoresis; 2015 Mar; 36(5):722-30. PubMed ID: 25475510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the discrete dielectrophoresis for particle-cell separation.
    Techaumnat B; Panklang N; Wisitsoraat A; Suzuki Y
    Electrophoresis; 2020 Jun; 41(10-11):991-1001. PubMed ID: 32060955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous and continuous particle separation and counting
    Song Y; Han X; Li D; Liu Q; Li D
    RSC Adv; 2021 Jan; 11(7):3827-3833. PubMed ID: 35424334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-voltage driven control in electrophoresis microchips by traveling electric field.
    Fu LM; Yang RJ
    Electrophoresis; 2003 Apr; 24(7-8):1253-60. PubMed ID: 12707919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of microplastics using microfluidic approach.
    Zhang Y; Zhang M; Fan Y
    Environ Geochem Health; 2023 Mar; 45(3):1045-1052. PubMed ID: 35377100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting.
    Ghadiri MM; Hosseini SA; Sadatsakkak SA; Rajabpour A
    Biomed Microdevices; 2021 Aug; 23(3):41. PubMed ID: 34379212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.