These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38409340)

  • 21. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bipolar electrode focusing: simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode.
    Laws DR; Hlushkou D; Perdue RK; Tallarek U; Crooks RM
    Anal Chem; 2009 Nov; 81(21):8923-9. PubMed ID: 19874055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous size-based DEP separation of particles using a bi-gap electrode pair.
    Derakhshan R; Ramiar A; Ghasemi A
    Analyst; 2022 Nov; 147(23):5395-5408. PubMed ID: 36286388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow.
    Zhao K; Peng R; Li D
    Nanoscale; 2016 Dec; 8(45):18945-18955. PubMed ID: 27775139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chip for dielectrophoretic microbial capture, separation and detection I: theoretical basis of electrode design.
    Weber MU; Petkowski JJ; Weber RE; Krajnik B; Stemplewski S; Panek M; Dziubak T; Mrozinska P; Piela A; Lo SL; Montanaro Ochoa HF; Yerino CD
    Nanotechnology; 2023 Jan; 34(13):. PubMed ID: 36571849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
    Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation.
    Sharbati P; Sadaghiani AK; Koşar A
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces.
    Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D
    Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous dielectrophoretic separation of particles in a spiral microchannel.
    Zhu J; Tzeng TR; Xuan X
    Electrophoresis; 2010 Apr; 31(8):1382-8. PubMed ID: 20301126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation and characterization of microplastic and nanoplastic particles in marine environment.
    Zhao K; Wei Y; Dong J; Zhao P; Wang Y; Pan X; Wang J
    Environ Pollut; 2022 Mar; 297():118773. PubMed ID: 34974085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bipolar electrode focusing: tuning the electric field gradient.
    Anand RK; Sheridan E; Hlushkou D; Tallarek U; Crooks RM
    Lab Chip; 2011 Feb; 11(3):518-27. PubMed ID: 21120239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-particle interaction in AC electric field driven by dielectrophoresis force.
    Huang Z; Wu Z; Wang P; Zhou T; Shi L; Liu Z; Huang J
    Electrophoresis; 2021 Nov; 42(21-22):2189-2196. PubMed ID: 34117650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dielectrophoresis Multipath Focusing of Microparticles through Perforated Electrodes in Microfluidic Channels.
    Alazzam A; Al-Khaleel M; Riahi MK; Mathew B; Gawanmeh A; Nerguizian V
    Biosensors (Basel); 2019 Aug; 9(3):. PubMed ID: 31394810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-channel bipolar electrode focusing: simultaneous separation and enrichment of both anions and cations.
    Knust KN; Sheridan E; Anand RK; Crooks RM
    Lab Chip; 2012 Oct; 12(20):4107-14. PubMed ID: 22952054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical studies of manipulation and separation of microparticles in ODEP-based microfluidic chips.
    Zhao K; Yao J; Wei Y; Kong D; Wang J
    Electrophoresis; 2024 Feb; ():. PubMed ID: 38419136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.
    Kinio S; Mills JK
    Biomed Microdevices; 2016 Aug; 18(4):69. PubMed ID: 27432322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectrophoresis in a slanted microchannel for separation of microparticles and bacteria.
    Nam SW; Kim SH; Park JK; Park S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7993-7. PubMed ID: 24266178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.